Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.198

Min(phi) over symmetries of the knot is: [-4,-3,1,2,2,2,0,1,3,4,5,0,1,2,3,0,0,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.198']
Arrow polynomial of the knot is: -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.58', '6.76', '6.78', '6.90', '6.98', '6.154', '6.161', '6.162', '6.198', '6.280', '6.284', '6.345', '6.417', '6.421', '6.435', '6.511']
Outer characteristic polynomial of the knot is: t^7+103t^5+173t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.198']
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 96*K1**3*K3*K4 + 168*K1**2*K2 - 752*K1**2*K3**2 - 208*K1**2*K4**2 - 972*K1**2 + 1632*K1*K2*K3 + 1224*K1*K3*K4 + 152*K1*K4*K5 + 8*K1*K5*K6 + 24*K1*K6*K7 - 560*K2**2*K3**2 - 8*K2**2*K4**2 + 160*K2**2*K4 - 8*K2**2*K6**2 - 810*K2**2 + 416*K2*K3*K5 + 48*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 64*K3**4 + 96*K3**2*K6 - 996*K3**2 - 530*K4**2 - 112*K5**2 - 70*K6**2 - 16*K7**2 - 2*K8**2 + 1210
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.198']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17122', 'vk6.17365', 'vk6.20257', 'vk6.21564', 'vk6.23522', 'vk6.23857', 'vk6.27495', 'vk6.29087', 'vk6.35683', 'vk6.36112', 'vk6.38910', 'vk6.41111', 'vk6.43030', 'vk6.43338', 'vk6.45661', 'vk6.47392', 'vk6.55271', 'vk6.55519', 'vk6.57086', 'vk6.58244', 'vk6.59688', 'vk6.60027', 'vk6.61644', 'vk6.62820', 'vk6.65076', 'vk6.65265', 'vk6.66723', 'vk6.67585', 'vk6.68330', 'vk6.68478', 'vk6.69369', 'vk6.70109']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2O6U1U6U5U4U3
R3 orbit {'O1O2O3O4O5U2O6U1U6U5U4U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U3U2U1U6U5O6U4
Gauss code of K* O1O2O3O4O5U1U6U5U4U3O6U2
Gauss code of -K* O1O2O3O4O5U4O6U3U2U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -3 2 2 2 1],[ 4 0 0 5 4 3 1],[ 3 0 0 3 2 1 0],[-2 -5 -3 0 0 0 0],[-2 -4 -2 0 0 0 0],[-2 -3 -1 0 0 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 2 2 2 1 -3 -4],[-2 0 0 0 0 -1 -3],[-2 0 0 0 0 -2 -4],[-2 0 0 0 0 -3 -5],[-1 0 0 0 0 0 -1],[ 3 1 2 3 0 0 0],[ 4 3 4 5 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-2,-1,3,4,0,0,0,1,3,0,0,2,4,0,3,5,0,1,0]
Phi over symmetry [-4,-3,1,2,2,2,0,1,3,4,5,0,1,2,3,0,0,0,0,0,0]
Phi of -K [-4,-3,1,2,2,2,1,4,1,2,3,4,2,3,4,1,1,1,0,0,0]
Phi of K* [-2,-2,-2,-1,3,4,0,0,1,2,1,0,1,3,2,1,4,3,4,4,1]
Phi of -K* [-4,-3,1,2,2,2,0,1,3,4,5,0,1,2,3,0,0,0,0,0,0]
Symmetry type of based matrix c
u-polynomial t^4+t^3-3t^2-t
Normalized Jones-Krushkal polynomial 5z+11
Enhanced Jones-Krushkal polynomial 4w^4z-10w^3z+11w^2z+11w
Inner characteristic polynomial t^6+65t^4+38t^2
Outer characteristic polynomial t^7+103t^5+173t^3
Flat arrow polynomial -2*K1*K2 - 2*K1*K3 + K1 + K2 + K3 + K4 + 1
2-strand cable arrow polynomial -144*K1**4 + 96*K1**3*K3*K4 + 168*K1**2*K2 - 752*K1**2*K3**2 - 208*K1**2*K4**2 - 972*K1**2 + 1632*K1*K2*K3 + 1224*K1*K3*K4 + 152*K1*K4*K5 + 8*K1*K5*K6 + 24*K1*K6*K7 - 560*K2**2*K3**2 - 8*K2**2*K4**2 + 160*K2**2*K4 - 8*K2**2*K6**2 - 810*K2**2 + 416*K2*K3*K5 + 48*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 64*K3**4 + 96*K3**2*K6 - 996*K3**2 - 530*K4**2 - 112*K5**2 - 70*K6**2 - 16*K7**2 - 2*K8**2 + 1210
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact