Min(phi) over symmetries of the knot is: [-4,-3,1,1,2,3,0,1,4,3,5,0,2,1,3,0,0,0,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.197'] |
Arrow polynomial of the knot is: -8*K1**4 + 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.197'] |
Outer characteristic polynomial of the knot is: t^7+106t^5+194t^3+10t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.197'] |
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 256*K1**4*K2**2 + 512*K1**4*K2 - 2768*K1**4 + 320*K1**3*K2*K3 - 352*K1**3*K3 + 128*K1**2*K2**5 - 1472*K1**2*K2**4 + 2048*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 9056*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 10544*K1**2*K2 - 496*K1**2*K3**2 - 32*K1**2*K4**2 - 5724*K1**2 + 256*K1*K2**5*K3 + 2304*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1760*K1*K2**2*K3 - 384*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 9096*K1*K2*K3 + 1032*K1*K3*K4 + 72*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 928*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 672*K2**4*K4 - 3464*K2**4 + 96*K2**3*K3*K5 - 96*K2**3*K6 - 1488*K2**2*K3**2 - 240*K2**2*K4**2 + 3144*K2**2*K4 - 32*K2**2*K5**2 - 3398*K2**2 + 752*K2*K3*K5 + 88*K2*K4*K6 + 8*K2*K5*K7 - 2276*K3**2 - 714*K4**2 - 112*K5**2 - 10*K6**2 + 4976 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.197'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17018', 'vk6.17261', 'vk6.20234', 'vk6.21530', 'vk6.23434', 'vk6.23737', 'vk6.27445', 'vk6.29051', 'vk6.35508', 'vk6.35957', 'vk6.38862', 'vk6.41050', 'vk6.42928', 'vk6.43225', 'vk6.45613', 'vk6.47368', 'vk6.55199', 'vk6.55436', 'vk6.57070', 'vk6.58208', 'vk6.59586', 'vk6.59910', 'vk6.61599', 'vk6.62777', 'vk6.64998', 'vk6.65204', 'vk6.66695', 'vk6.67542', 'vk6.68278', 'vk6.68431', 'vk6.69344', 'vk6.70092'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U2O6U1U6U5U3U4 |
R3 orbit | {'O1O2O3O4O5U2O6U1U6U5U3U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U2U3U1U6U5O6U4 |
Gauss code of K* | O1O2O3O4O5U1U6U4U5U3O6U2 |
Gauss code of -K* | O1O2O3O4O5U4O6U3U1U2U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 -3 1 3 2 1],[ 4 0 0 4 5 3 1],[ 3 0 0 2 3 1 0],[-1 -4 -2 0 1 0 0],[-3 -5 -3 -1 0 0 0],[-2 -3 -1 0 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix | [[ 0 3 2 1 1 -3 -4],[-3 0 0 0 -1 -3 -5],[-2 0 0 0 0 -1 -3],[-1 0 0 0 0 0 -1],[-1 1 0 0 0 -2 -4],[ 3 3 1 0 2 0 0],[ 4 5 3 1 4 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-2,-1,-1,3,4,0,0,1,3,5,0,0,1,3,0,0,1,2,4,0] |
Phi over symmetry | [-4,-3,1,1,2,3,0,1,4,3,5,0,2,1,3,0,0,0,0,1,0] |
Phi of -K | [-4,-3,1,1,2,3,1,1,4,3,2,2,4,4,3,0,1,1,1,2,1] |
Phi of K* | [-3,-2,-1,-1,3,4,1,1,2,3,2,1,1,4,3,0,2,1,4,4,1] |
Phi of -K* | [-4,-3,1,1,2,3,0,1,4,3,5,0,2,1,3,0,0,0,0,1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^2-2t |
Normalized Jones-Krushkal polynomial | 5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2+24w^2z+29w |
Inner characteristic polynomial | t^6+66t^4+49t^2+1 |
Outer characteristic polynomial | t^7+106t^5+194t^3+10t |
Flat arrow polynomial | -8*K1**4 + 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial | -128*K1**6 - 256*K1**4*K2**2 + 512*K1**4*K2 - 2768*K1**4 + 320*K1**3*K2*K3 - 352*K1**3*K3 + 128*K1**2*K2**5 - 1472*K1**2*K2**4 + 2048*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 9056*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 10544*K1**2*K2 - 496*K1**2*K3**2 - 32*K1**2*K4**2 - 5724*K1**2 + 256*K1*K2**5*K3 + 2304*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1760*K1*K2**2*K3 - 384*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 9096*K1*K2*K3 + 1032*K1*K3*K4 + 72*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 928*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 672*K2**4*K4 - 3464*K2**4 + 96*K2**3*K3*K5 - 96*K2**3*K6 - 1488*K2**2*K3**2 - 240*K2**2*K4**2 + 3144*K2**2*K4 - 32*K2**2*K5**2 - 3398*K2**2 + 752*K2*K3*K5 + 88*K2*K4*K6 + 8*K2*K5*K7 - 2276*K3**2 - 714*K4**2 - 112*K5**2 - 10*K6**2 + 4976 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]] |
If K is slice | False |