Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1960

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,1,1,1,0,2,-1,-1,1,1,0,0,0,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1960']
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962']
Outer characteristic polynomial of the knot is: t^7+25t^5+63t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1960']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 832*K1**4*K2**2 + 1664*K1**4*K2 - 5232*K1**4 + 704*K1**3*K2*K3 - 832*K1**3*K3 + 864*K1**2*K2**3 - 7712*K1**2*K2**2 - 416*K1**2*K2*K4 + 11120*K1**2*K2 - 112*K1**2*K3**2 - 3936*K1**2 - 480*K1*K2**2*K3 + 6560*K1*K2*K3 + 240*K1*K3*K4 - 552*K2**4 + 544*K2**2*K4 - 3672*K2**2 - 1344*K3**2 - 146*K4**2 + 3824
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1960']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4688', 'vk6.4991', 'vk6.6170', 'vk6.6641', 'vk6.8167', 'vk6.8585', 'vk6.9557', 'vk6.9896', 'vk6.17392', 'vk6.20912', 'vk6.20983', 'vk6.22322', 'vk6.22407', 'vk6.23559', 'vk6.23896', 'vk6.28388', 'vk6.36160', 'vk6.40042', 'vk6.40184', 'vk6.42093', 'vk6.43071', 'vk6.43375', 'vk6.46570', 'vk6.46689', 'vk6.48728', 'vk6.49520', 'vk6.49723', 'vk6.51428', 'vk6.55558', 'vk6.58910', 'vk6.65296', 'vk6.69764']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3O4U5U6O5U2O6U3U4
R3 orbit {'O1O2U1O3O4U5U6O5U2O6U3U4'}
R3 orbit length 1
Gauss code of -K O1O2U3O4O3U1U2O5U4O6U5U6
Gauss code of K* O1O2U1O3U2O4O5U6U3O6U4U5
Gauss code of -K* O1O2U3O4U5O3O5U1U2O6U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 2 -1 0],[ 1 0 1 1 1 1 0],[ 0 -1 0 0 1 0 1],[ 0 -1 0 0 1 -1 1],[-2 -1 -1 -1 0 -3 -1],[ 1 -1 0 1 3 0 0],[ 0 0 -1 -1 1 0 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 -1 -1 -1 -1 -3],[ 0 1 0 1 0 -1 0],[ 0 1 -1 0 -1 0 0],[ 0 1 0 1 0 -1 -1],[ 1 1 1 0 1 0 1],[ 1 3 0 0 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,1,1,1,1,3,-1,0,1,0,1,0,0,1,1,-1]
Phi over symmetry [-2,0,0,0,1,1,1,1,1,0,2,-1,-1,1,1,0,0,0,1,0,-1]
Phi of -K [-1,-1,0,0,0,2,-1,0,0,1,2,0,1,1,0,0,-1,1,-1,1,1]
Phi of K* [-2,0,0,0,1,1,1,1,1,0,2,-1,-1,1,1,0,0,0,1,0,-1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,0,1,3,0,1,1,1,-1,-1,1,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+19t^4+44t^2+4
Outer characteristic polynomial t^7+25t^5+63t^3+11t
Flat arrow polynomial -10*K1**2 + 5*K2 + 6
2-strand cable arrow polynomial -256*K1**6 - 832*K1**4*K2**2 + 1664*K1**4*K2 - 5232*K1**4 + 704*K1**3*K2*K3 - 832*K1**3*K3 + 864*K1**2*K2**3 - 7712*K1**2*K2**2 - 416*K1**2*K2*K4 + 11120*K1**2*K2 - 112*K1**2*K3**2 - 3936*K1**2 - 480*K1*K2**2*K3 + 6560*K1*K2*K3 + 240*K1*K3*K4 - 552*K2**4 + 544*K2**2*K4 - 3672*K2**2 - 1344*K3**2 - 146*K4**2 + 3824
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}]]
If K is slice False
Contact