Gauss code |
O1O2O3O4O5U2O6U1U6U4U5U3 |
R3 orbit |
{'O1O2O3O4O5U2O6U1U6U4U5U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U1U2U6U5O6U4 |
Gauss code of K* |
O1O2O3O4O5U1U6U5U3U4O6U2 |
Gauss code of -K* |
O1O2O3O4O5U4O6U2U3U1U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 2 1 3 1],[ 4 0 0 5 3 4 1],[ 3 0 0 3 1 2 0],[-2 -5 -3 0 -1 1 0],[-1 -3 -1 1 0 1 0],[-3 -4 -2 -1 -1 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 2 1 1 -3 -4],[-3 0 -1 0 -1 -2 -4],[-2 1 0 0 -1 -3 -5],[-1 0 0 0 0 0 -1],[-1 1 1 0 0 -1 -3],[ 3 2 3 0 1 0 0],[ 4 4 5 1 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,-1,3,4,1,0,1,2,4,0,1,3,5,0,0,1,1,3,0] |
Phi over symmetry |
[-4,-3,1,1,2,3,0,1,3,5,4,0,1,3,2,0,0,0,1,1,1] |
Phi of -K |
[-4,-3,1,1,2,3,1,2,4,1,3,3,4,2,4,0,0,1,1,2,0] |
Phi of K* |
[-3,-2,-1,-1,3,4,0,1,2,4,3,0,1,2,1,0,3,2,4,4,1] |
Phi of -K* |
[-4,-3,1,1,2,3,0,1,3,5,4,0,1,3,2,0,0,0,1,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
7z+15 |
Enhanced Jones-Krushkal polynomial |
4w^4z-8w^3z+11w^2z+15w |
Inner characteristic polynomial |
t^6+68t^4+45t^2 |
Outer characteristic polynomial |
t^7+108t^5+182t^3 |
Flat arrow polynomial |
-8*K1**4 + 4*K1**3 + 4*K1**2*K2 - 2*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 224*K1**4*K2 - 1152*K1**4 + 128*K1**3*K2**3*K3 + 224*K1**3*K2*K3 + 128*K1**2*K2**5 - 1600*K1**2*K2**4 + 1088*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 2944*K1**2*K2**2 + 2904*K1**2*K2 - 288*K1**2*K3**2 - 32*K1**2*K4**2 - 1508*K1**2 + 256*K1*K2**5*K3 + 1472*K1*K2**3*K3 + 32*K1*K2*K3**3 + 2424*K1*K2*K3 + 400*K1*K3*K4 + 48*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 928*K2**6 - 384*K2**4*K3**2 - 32*K2**4*K4**2 + 448*K2**4*K4 - 712*K2**4 + 192*K2**3*K3*K5 - 720*K2**2*K3**2 - 48*K2**2*K4**2 + 400*K2**2*K4 - 32*K2**2*K5**2 - 438*K2**2 + 256*K2*K3*K5 + 8*K2*K4*K6 + 16*K3**2*K6 - 756*K3**2 - 194*K4**2 - 56*K5**2 - 10*K6**2 + 1504 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |