Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1950

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,1,2,3,0,0,1,1,0,1,0,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1950']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+28t^5+36t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1950']
2-strand cable arrow polynomial of the knot is: 1024*K1**4*K2 - 2720*K1**4 - 288*K1**3*K3 + 768*K1**2*K2**3 - 5392*K1**2*K2**2 - 288*K1**2*K2*K4 + 7328*K1**2*K2 - 3428*K1**2 - 224*K1*K2**2*K3 + 3776*K1*K2*K3 + 64*K1*K3*K4 - 552*K2**4 + 392*K2**2*K4 - 2440*K2**2 - 620*K3**2 - 58*K4**2 + 2656
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1950']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81601', 'vk6.81604', 'vk6.81682', 'vk6.81690', 'vk6.81750', 'vk6.81755', 'vk6.81764', 'vk6.81769', 'vk6.81975', 'vk6.81977', 'vk6.82288', 'vk6.82293', 'vk6.82406', 'vk6.82410', 'vk6.82440', 'vk6.82441', 'vk6.82521', 'vk6.82705', 'vk6.82709', 'vk6.83212', 'vk6.83614', 'vk6.84201', 'vk6.84203', 'vk6.84393', 'vk6.84401', 'vk6.85997', 'vk6.86000', 'vk6.88186', 'vk6.88754', 'vk6.88781', 'vk6.89110', 'vk6.89125']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U3O4O5U2O6U1U5O3U6U4
R3 orbit {'O1O2U3O4O5U2O6U1U5O3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2U3O4O5U2U6O3U1U5O6U4
Gauss code of K* O1O2U3O4O5U1U6O3U5U2O6U4
Gauss code of -K* O1O2U3O4O5U2O6U4U1O3U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 1 1 1],[ 2 0 0 0 3 2 1],[ 1 0 0 0 1 1 0],[ 0 0 0 0 0 1 0],[-1 -3 -1 0 0 -1 1],[-1 -2 -1 -1 1 0 1],[-1 -1 0 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 -1 -1 -2],[-1 -1 0 1 0 -1 -3],[-1 -1 -1 0 0 0 -1],[ 0 1 0 0 0 0 0],[ 1 1 1 0 0 0 0],[ 2 2 3 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,0,1,3,0,0,1,0,0,0]
Phi over symmetry [-2,-1,0,1,1,1,0,0,1,2,3,0,0,1,1,0,1,0,-1,-1,1]
Phi of -K [-2,-1,0,1,1,1,1,2,0,1,2,1,1,1,2,1,0,1,1,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,1,2,2,-1,1,1,0,0,1,1,1,2,1]
Phi of -K* [-2,-1,0,1,1,1,0,0,1,2,3,0,0,1,1,0,1,0,-1,-1,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 7z^2+28z+29
Enhanced Jones-Krushkal polynomial 7w^3z^2+28w^2z+29w
Inner characteristic polynomial t^6+20t^4+15t^2+1
Outer characteristic polynomial t^7+28t^5+36t^3+4t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 1024*K1**4*K2 - 2720*K1**4 - 288*K1**3*K3 + 768*K1**2*K2**3 - 5392*K1**2*K2**2 - 288*K1**2*K2*K4 + 7328*K1**2*K2 - 3428*K1**2 - 224*K1*K2**2*K3 + 3776*K1*K2*K3 + 64*K1*K3*K4 - 552*K2**4 + 392*K2**2*K4 - 2440*K2**2 - 620*K3**2 - 58*K4**2 + 2656
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {3, 4}, {1}]]
If K is slice False
Contact