Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,3,0,0,1,1,0,0,0,-1,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1945'] |
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971'] |
Outer characteristic polynomial of the knot is: t^7+30t^5+65t^3+15t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1945'] |
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 256*K1**4*K2**2 + 1408*K1**4*K2 - 3968*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 896*K1**2*K2**3 - 5424*K1**2*K2**2 - 256*K1**2*K2*K4 + 7504*K1**2*K2 - 160*K1**2*K3**2 - 2532*K1**2 - 1152*K1*K2**2*K3 + 4608*K1*K2*K3 + 600*K1*K3*K4 - 632*K2**4 + 856*K2**2*K4 - 2784*K2**2 - 1140*K3**2 - 310*K4**2 + 2868 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1945'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11046', 'vk6.11126', 'vk6.12212', 'vk6.12321', 'vk6.16426', 'vk6.19225', 'vk6.19318', 'vk6.19520', 'vk6.19613', 'vk6.22728', 'vk6.22829', 'vk6.26033', 'vk6.26082', 'vk6.26419', 'vk6.26506', 'vk6.30615', 'vk6.30712', 'vk6.31923', 'vk6.34773', 'vk6.38104', 'vk6.38124', 'vk6.42387', 'vk6.44624', 'vk6.44744', 'vk6.51851', 'vk6.52716', 'vk6.52821', 'vk6.56572', 'vk6.56630', 'vk6.64730', 'vk6.66270', 'vk6.66300'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U3O4O3U5O6U4U2O5U1U6 |
R3 orbit | {'O1O2U3O4O3U5O6U4U2O5U1U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2U1O3O4U5U4O6U3U2O5U6 |
Gauss code of K* | O1O2U3O4O5U4U2O6U1U6O3U5 |
Gauss code of -K* | O1O2U3O4O5U1O3U6U5O6U4U2 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 1 -1 -1 2],[ 1 0 1 2 0 -1 2],[ 0 -1 0 1 -1 -1 1],[-1 -2 -1 0 -1 -1 1],[ 1 0 1 1 0 1 0],[ 1 1 1 1 -1 0 2],[-2 -2 -1 -1 0 -2 0]] |
Primitive based matrix | [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 0 -2 -2],[-1 1 0 -1 -1 -1 -2],[ 0 1 1 0 -1 -1 -1],[ 1 0 1 1 0 1 0],[ 1 2 1 1 -1 0 1],[ 1 2 2 1 0 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,1,1,1,1,1,0,2,2,1,1,1,2,1,1,1,-1,0,-1] |
Phi over symmetry | [-2,-1,0,1,1,1,0,1,1,1,3,0,0,1,1,0,0,0,-1,0,-1] |
Phi of -K | [-1,-1,-1,0,1,2,-1,0,0,1,3,-1,0,1,1,0,0,1,0,1,0] |
Phi of K* | [-2,-1,0,1,1,1,0,1,1,1,3,0,0,1,1,0,0,0,-1,0,-1] |
Phi of -K* | [-1,-1,-1,0,1,2,-1,0,1,2,2,-1,1,1,2,1,1,0,1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 4z^2+25z+35 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+25w^2z+35w |
Inner characteristic polynomial | t^6+22t^4+44t^2+9 |
Outer characteristic polynomial | t^7+30t^5+65t^3+15t |
Flat arrow polynomial | -6*K1**2 + 3*K2 + 4 |
2-strand cable arrow polynomial | -256*K1**6 - 256*K1**4*K2**2 + 1408*K1**4*K2 - 3968*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 896*K1**2*K2**3 - 5424*K1**2*K2**2 - 256*K1**2*K2*K4 + 7504*K1**2*K2 - 160*K1**2*K3**2 - 2532*K1**2 - 1152*K1*K2**2*K3 + 4608*K1*K2*K3 + 600*K1*K3*K4 - 632*K2**4 + 856*K2**2*K4 - 2784*K2**2 - 1140*K3**2 - 310*K4**2 + 2868 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | False |