Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,2,1,2,0,1,0,0,1,0,1,1,2,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1944'] |
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951'] |
Outer characteristic polynomial of the knot is: t^7+25t^5+45t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1944'] |
2-strand cable arrow polynomial of the knot is: 128*K1**4*K2 - 3520*K1**4 - 64*K1**3*K3 - 496*K1**2*K2**2 + 3904*K1**2*K2 - 292*K1**2 + 432*K1*K2*K3 - 8*K2**4 + 8*K2**2*K4 - 1056*K2**2 - 92*K3**2 - 2*K4**2 + 1056 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1944'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4649', 'vk6.4932', 'vk6.6093', 'vk6.6586', 'vk6.8106', 'vk6.8502', 'vk6.9492', 'vk6.9855', 'vk6.20623', 'vk6.22052', 'vk6.28105', 'vk6.29548', 'vk6.39525', 'vk6.41750', 'vk6.46132', 'vk6.47776', 'vk6.48689', 'vk6.48892', 'vk6.49443', 'vk6.49664', 'vk6.50699', 'vk6.50896', 'vk6.51186', 'vk6.51391', 'vk6.57515', 'vk6.58705', 'vk6.62207', 'vk6.63155', 'vk6.67025', 'vk6.67900', 'vk6.69650', 'vk6.70333'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U1O3O4U5O6U4U3O5U2U6 |
R3 orbit | {'O1O2U1O3O4U5O6U4U3O5U2U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2U3O4O3U5U4O6U2U1O5U6 |
Gauss code of K* | O1O2U3O4O5U6U4O6U2U1O3U5 |
Gauss code of -K* | O1O2U3O4O5U1O3U5U4O6U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 0 0 -1 2],[ 1 0 1 0 0 1 1],[ 0 -1 0 1 1 -2 2],[ 0 0 -1 0 0 -1 1],[ 0 0 -1 0 0 0 0],[ 1 -1 2 1 0 0 2],[-2 -1 -2 -1 0 -2 0]] |
Primitive based matrix | [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -2 -1 -2],[ 0 0 0 0 -1 0 0],[ 0 1 0 0 -1 0 -1],[ 0 2 1 1 0 -1 -2],[ 1 1 0 0 1 0 1],[ 1 2 0 1 2 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,0,0,0,1,1,0,1,2,1,2,0,1,0,0,1,0,1,1,2,-1] |
Phi over symmetry | [-2,0,0,0,1,1,0,1,2,1,2,0,1,0,0,1,0,1,1,2,-1] |
Phi of -K | [-1,-1,0,0,0,2,-1,0,1,1,2,-1,0,1,1,-1,-1,0,0,1,2] |
Phi of K* | [-2,0,0,0,1,1,0,1,2,1,2,1,1,-1,0,0,0,1,1,1,-1] |
Phi of -K* | [-1,-1,0,0,0,2,-1,0,1,2,2,0,0,1,1,0,-1,0,-1,1,2] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+21w^2z+27w |
Inner characteristic polynomial | t^6+19t^4+24t^2+4 |
Outer characteristic polynomial | t^7+25t^5+45t^3+8t |
Flat arrow polynomial | -2*K1**2 + K2 + 2 |
2-strand cable arrow polynomial | 128*K1**4*K2 - 3520*K1**4 - 64*K1**3*K3 - 496*K1**2*K2**2 + 3904*K1**2*K2 - 292*K1**2 + 432*K1*K2*K3 - 8*K2**4 + 8*K2**2*K4 - 1056*K2**2 - 92*K3**2 - 2*K4**2 + 1056 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {3, 5}, {2, 4}, {1}]] |
If K is slice | False |