Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1941

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,0,2,2,1,1,1,1,1,1,2,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1941']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+32t^5+36t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1941']
2-strand cable arrow polynomial of the knot is: -640*K1**6 - 256*K1**4*K2**2 + 1984*K1**4*K2 - 4576*K1**4 + 288*K1**3*K2*K3 - 832*K1**3*K3 + 1152*K1**2*K2**3 - 5424*K1**2*K2**2 - 672*K1**2*K2*K4 + 8432*K1**2*K2 - 352*K1**2*K3**2 - 3212*K1**2 - 448*K1*K2**2*K3 + 5168*K1*K2*K3 + 648*K1*K3*K4 - 824*K2**4 + 776*K2**2*K4 - 2968*K2**2 - 1260*K3**2 - 302*K4**2 + 3316
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1941']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11554', 'vk6.11569', 'vk6.11894', 'vk6.11908', 'vk6.12910', 'vk6.13211', 'vk6.13226', 'vk6.20957', 'vk6.20968', 'vk6.22373', 'vk6.22386', 'vk6.28420', 'vk6.31342', 'vk6.31354', 'vk6.31753', 'vk6.32512', 'vk6.32520', 'vk6.32911', 'vk6.32919', 'vk6.40138', 'vk6.40153', 'vk6.42147', 'vk6.46649', 'vk6.46660', 'vk6.52341', 'vk6.52602', 'vk6.52616', 'vk6.53475', 'vk6.53488', 'vk6.58950', 'vk6.64478', 'vk6.69790']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3O4U2O5U6U4O6U3U5
R3 orbit {'O1O2U1O3O4U2O5U6U4O6U3U5'}
R3 orbit length 1
Gauss code of -K O1O2U3O4O3U5U2O6U1U6O5U4
Gauss code of K* O1O2U1O3O4U5U6O5U3U2O6U4
Gauss code of -K* O1O2U3O4O3U1O5U4U2O6U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 1 2 -1],[ 1 0 1 1 1 0 1],[ 1 -1 0 2 1 2 0],[ 0 -1 -2 0 1 2 -1],[-1 -1 -1 -1 0 0 -1],[-2 0 -2 -2 0 0 -2],[ 1 -1 0 1 1 2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -2 0 -2 -2],[-1 0 0 -1 -1 -1 -1],[ 0 2 1 0 -1 -1 -2],[ 1 0 1 1 0 1 1],[ 1 2 1 1 -1 0 0],[ 1 2 1 2 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,2,0,2,2,1,1,1,1,1,1,2,-1,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,0,2,2,1,1,1,1,1,1,2,-1,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,0,1,3,0,-1,1,1,0,1,1,0,0,1]
Phi of K* [-2,-1,0,1,1,1,1,0,1,1,3,0,1,1,1,-1,0,0,0,-1,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,1,1,2,1,1,1,0,2,1,2,1,2,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+24t^4+23t^2+4
Outer characteristic polynomial t^7+32t^5+36t^3+9t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -640*K1**6 - 256*K1**4*K2**2 + 1984*K1**4*K2 - 4576*K1**4 + 288*K1**3*K2*K3 - 832*K1**3*K3 + 1152*K1**2*K2**3 - 5424*K1**2*K2**2 - 672*K1**2*K2*K4 + 8432*K1**2*K2 - 352*K1**2*K3**2 - 3212*K1**2 - 448*K1*K2**2*K3 + 5168*K1*K2*K3 + 648*K1*K3*K4 - 824*K2**4 + 776*K2**2*K4 - 2968*K2**2 - 1260*K3**2 - 302*K4**2 + 3316
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}]]
If K is slice False
Contact