Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1935

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,1,0,1,1,2,0,1,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1935']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+26t^5+47t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1935']
2-strand cable arrow polynomial of the knot is: 736*K1**4*K2 - 2576*K1**4 + 384*K1**3*K2*K3 - 1248*K1**3*K3 + 32*K1**3*K4*K5 + 128*K1**2*K2**2*K4 - 2640*K1**2*K2**2 - 1216*K1**2*K2*K4 + 7656*K1**2*K2 - 464*K1**2*K3**2 - 176*K1**2*K4**2 - 96*K1**2*K5**2 - 6060*K1**2 - 704*K1*K2**2*K3 - 288*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 6640*K1*K2*K3 - 64*K1*K2*K4*K5 + 2168*K1*K3*K4 + 656*K1*K4*K5 + 128*K1*K5*K6 - 104*K2**4 - 192*K2**2*K3**2 - 80*K2**2*K4**2 + 1696*K2**2*K4 - 5452*K2**2 + 1016*K2*K3*K5 + 152*K2*K4*K6 - 2808*K3**2 - 1462*K4**2 - 596*K5**2 - 84*K6**2 + 5332
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1935']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4876', 'vk6.5219', 'vk6.6466', 'vk6.6885', 'vk6.8431', 'vk6.8850', 'vk6.9775', 'vk6.10066', 'vk6.11683', 'vk6.12034', 'vk6.13029', 'vk6.20494', 'vk6.20759', 'vk6.21855', 'vk6.27900', 'vk6.29402', 'vk6.29728', 'vk6.32680', 'vk6.33021', 'vk6.39331', 'vk6.39791', 'vk6.46355', 'vk6.47601', 'vk6.47932', 'vk6.48834', 'vk6.49103', 'vk6.51357', 'vk6.51568', 'vk6.53282', 'vk6.57355', 'vk6.64351', 'vk6.66908']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4U5O6O5O4U3U6U2
R3 orbit {'O1O2O3U1U4U5O6O5O4U3U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U1U4O5O6O4U6U3U5
Gauss code of K* O1O2O3U4U3U1O4O5O6U2U6U5
Gauss code of -K* O1O2O3U4U5U2O5O4O6U3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 1 1 -1],[ 2 0 2 1 2 2 1],[-1 -2 0 -1 0 0 -1],[ 0 -1 1 0 0 0 -1],[-1 -2 0 0 0 0 0],[-1 -2 0 0 0 0 -1],[ 1 -1 1 1 0 1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 0 0 0 0 -2],[-1 0 0 0 0 -1 -2],[-1 0 0 0 -1 -1 -2],[ 0 0 0 1 0 -1 -1],[ 1 0 1 1 1 0 -1],[ 2 2 2 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,0,0,0,0,2,0,0,1,2,1,1,2,1,1,1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,1,0,1,1,2,0,1,1,0,0,0]
Phi of -K [-2,-1,0,1,1,1,0,1,1,1,1,0,1,1,2,0,1,1,0,0,0]
Phi of K* [-1,-1,-1,0,1,2,0,0,0,1,1,0,1,1,1,1,2,1,0,1,0]
Phi of -K* [-2,-1,0,1,1,1,1,1,2,2,2,1,0,1,1,0,0,1,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+18t^4+26t^2+4
Outer characteristic polynomial t^7+26t^5+47t^3+11t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial 736*K1**4*K2 - 2576*K1**4 + 384*K1**3*K2*K3 - 1248*K1**3*K3 + 32*K1**3*K4*K5 + 128*K1**2*K2**2*K4 - 2640*K1**2*K2**2 - 1216*K1**2*K2*K4 + 7656*K1**2*K2 - 464*K1**2*K3**2 - 176*K1**2*K4**2 - 96*K1**2*K5**2 - 6060*K1**2 - 704*K1*K2**2*K3 - 288*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 6640*K1*K2*K3 - 64*K1*K2*K4*K5 + 2168*K1*K3*K4 + 656*K1*K4*K5 + 128*K1*K5*K6 - 104*K2**4 - 192*K2**2*K3**2 - 80*K2**2*K4**2 + 1696*K2**2*K4 - 5452*K2**2 + 1016*K2*K3*K5 + 152*K2*K4*K6 - 2808*K3**2 - 1462*K4**2 - 596*K5**2 - 84*K6**2 + 5332
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]]
If K is slice False
Contact