Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1930

Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,0,1,1,1,2,1,1,2,1,0,-1,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1930']
Arrow polynomial of the knot is: 4*K1**2*K2 - 12*K1**2 - 8*K1*K2 - 4*K1*K3 + 4*K1 + 6*K2 + 4*K3 + K4 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1930']
Outer characteristic polynomial of the knot is: t^7+28t^5+54t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1930']
2-strand cable arrow polynomial of the knot is: -2016*K1**4 + 2048*K1**3*K2*K3 + 64*K1**3*K3*K4 - 960*K1**3*K3 + 128*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 - 10048*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 2144*K1**2*K2*K4 + 12816*K1**2*K2 - 1632*K1**2*K3**2 - 224*K1**2*K4**2 - 32*K1**2*K4*K6 - 9216*K1**2 + 2624*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 2048*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 1280*K1*K2**2*K5 + 512*K1*K2*K3**3 - 448*K1*K2*K3*K4 + 13840*K1*K2*K3 - 256*K1*K2*K4*K5 - 64*K1*K2*K4*K7 + 2544*K1*K3*K4 + 464*K1*K4*K5 + 96*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 2624*K2**4 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 1984*K2**2*K3**2 - 352*K2**2*K4**2 - 32*K2**2*K4*K8 + 3488*K2**2*K4 - 128*K2**2*K5**2 - 16*K2**2*K6**2 - 6752*K2**2 + 1456*K2*K3*K5 + 336*K2*K4*K6 + 96*K2*K5*K7 + 16*K2*K6*K8 - 128*K3**4 - 3752*K3**2 - 1212*K4**2 - 328*K5**2 - 80*K6**2 - 16*K7**2 - 2*K8**2 + 7164
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1930']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71643', 'vk6.71662', 'vk6.71822', 'vk6.72244', 'vk6.72265', 'vk6.72374', 'vk6.72382', 'vk6.77259', 'vk6.77276', 'vk6.77357', 'vk6.77380', 'vk6.77607', 'vk6.77701', 'vk6.77723', 'vk6.81409', 'vk6.81443', 'vk6.86955', 'vk6.87164', 'vk6.88001', 'vk6.89549']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4U2O5O6O4U5U3U6
R3 orbit {'O1O2O3U1U4U2O5O6O4U5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O6O4O5U2U6U3
Gauss code of K* O1O2O3U4U5U2O4O6O5U1U3U6
Gauss code of -K* O1O2O3U4U1U3O5O4O6U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 1 -2 1],[ 2 0 1 2 1 0 1],[-1 -1 0 0 -1 -1 0],[-1 -2 0 0 0 -1 1],[-1 -1 1 0 0 -2 0],[ 2 0 1 1 2 0 1],[-1 -1 0 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 1 -2 -2],[-1 0 1 0 0 -1 -2],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 1 -2 -1],[-1 0 0 -1 0 -1 -1],[ 2 1 1 2 1 0 0],[ 2 2 1 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,-1,2,2,-1,0,0,1,2,0,0,1,1,-1,2,1,1,1,0]
Phi over symmetry [-2,-2,1,1,1,1,0,1,1,1,2,1,1,2,1,0,-1,0,0,-1,0]
Phi of -K [-2,-2,1,1,1,1,0,1,2,2,2,2,1,2,2,0,-1,0,0,-1,0]
Phi of K* [-1,-1,-1,-1,2,2,-1,0,0,2,2,0,0,1,2,-1,2,2,2,1,0]
Phi of -K* [-2,-2,1,1,1,1,0,1,1,1,2,1,1,2,1,0,-1,0,0,-1,0]
Symmetry type of based matrix c
u-polynomial 2t^2-4t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+16t^4+28t^2
Outer characteristic polynomial t^7+28t^5+54t^3+4t
Flat arrow polynomial 4*K1**2*K2 - 12*K1**2 - 8*K1*K2 - 4*K1*K3 + 4*K1 + 6*K2 + 4*K3 + K4 + 6
2-strand cable arrow polynomial -2016*K1**4 + 2048*K1**3*K2*K3 + 64*K1**3*K3*K4 - 960*K1**3*K3 + 128*K1**2*K2**3 - 640*K1**2*K2**2*K3**2 - 10048*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 2144*K1**2*K2*K4 + 12816*K1**2*K2 - 1632*K1**2*K3**2 - 224*K1**2*K4**2 - 32*K1**2*K4*K6 - 9216*K1**2 + 2624*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 2048*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 1280*K1*K2**2*K5 + 512*K1*K2*K3**3 - 448*K1*K2*K3*K4 + 13840*K1*K2*K3 - 256*K1*K2*K4*K5 - 64*K1*K2*K4*K7 + 2544*K1*K3*K4 + 464*K1*K4*K5 + 96*K1*K5*K6 + 16*K1*K6*K7 - 32*K2**4*K4**2 + 128*K2**4*K4 - 2624*K2**4 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 1984*K2**2*K3**2 - 352*K2**2*K4**2 - 32*K2**2*K4*K8 + 3488*K2**2*K4 - 128*K2**2*K5**2 - 16*K2**2*K6**2 - 6752*K2**2 + 1456*K2*K3*K5 + 336*K2*K4*K6 + 96*K2*K5*K7 + 16*K2*K6*K8 - 128*K3**4 - 3752*K3**2 - 1212*K4**2 - 328*K5**2 - 80*K6**2 - 16*K7**2 - 2*K8**2 + 7164
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact