Gauss code |
O1O2O3U1U4U3O4O5O6U5U6U2 |
R3 orbit |
{'O1O2O3U1U4U3O4O5O6U5U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U2U4U5O4O5O6U1U6U3 |
Gauss code of K* |
O1O2O3U2U4U5O4O5O6U1U6U3 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 2 -1 -1 1],[ 2 0 2 1 1 0 0],[-1 -2 0 1 -2 -1 1],[-2 -1 -1 0 -2 0 0],[ 1 -1 2 2 0 -1 1],[ 1 0 1 0 1 0 1],[-1 0 -1 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 0 -2 -1],[-1 0 0 -1 -1 -1 0],[-1 1 1 0 -1 -2 -2],[ 1 0 1 1 0 1 0],[ 1 2 1 2 -1 0 -1],[ 2 1 0 2 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,1,0,2,1,1,1,1,0,1,2,2,-1,0,1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,0,1,0,2,1,1,1,1,0,1,2,2,-1,0,1] |
Phi of -K |
[-2,-1,-1,1,1,2,0,1,1,3,3,1,0,1,1,1,1,3,-1,0,1] |
Phi of K* |
[-2,-1,-1,1,1,2,0,1,1,3,3,1,0,1,1,1,1,3,-1,0,1] |
Phi of -K* |
[-2,-1,-1,1,1,2,0,1,0,2,1,1,1,1,0,1,2,2,-1,0,1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+24z+33 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+24w^2z+33w |
Inner characteristic polynomial |
t^6+20t^4+24t^2+1 |
Outer characteristic polynomial |
t^7+32t^5+44t^3+7t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
-512*K1**6 - 640*K1**4*K2**2 + 4224*K1**4*K2 - 8608*K1**4 + 2304*K1**3*K2*K3 + 256*K1**3*K3*K4 - 2176*K1**3*K3 - 384*K1**2*K2**4 + 3456*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 13472*K1**2*K2**2 - 1856*K1**2*K2*K4 + 12560*K1**2*K2 - 1888*K1**2*K3**2 - 64*K1**2*K3*K5 - 288*K1**2*K4**2 - 1416*K1**2 + 1792*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 1792*K1*K2**2*K3 - 512*K1*K2**2*K5 - 448*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 9216*K1*K2*K3 - 64*K1*K2*K4*K5 + 1408*K1*K3*K4 + 160*K1*K4*K5 - 64*K2**6 + 128*K2**4*K4 - 3040*K2**4 - 64*K2**3*K6 - 1088*K2**2*K3**2 - 160*K2**2*K4**2 + 2096*K2**2*K4 - 1780*K2**2 + 512*K2*K3*K5 + 96*K2*K4*K6 - 1240*K3**2 - 312*K4**2 - 16*K5**2 - 4*K6**2 + 3102 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
True |