Gauss code |
O1O2O3U1U2U4O5O6O4U6U3U5 |
R3 orbit |
{'O1O2O3U1U2U4O5O6O4U6U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4U5O6O4O5U3U6U2 |
Gauss code of K* |
O1O2O3U4U5U2O4O5O6U3U1U6 |
Gauss code of -K* |
O1O2O3U4U3U1O4O5O6U2U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 2 0 -1],[ 2 0 1 2 2 1 0],[ 0 -1 0 1 0 1 0],[-1 -2 -1 0 0 0 -1],[-2 -2 0 0 0 -1 -1],[ 0 -1 -1 0 1 0 0],[ 1 0 0 1 1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 0 0 -1 -1 -2],[-1 0 0 -1 0 -1 -2],[ 0 0 1 0 1 0 -1],[ 0 1 0 -1 0 0 -1],[ 1 1 1 0 0 0 0],[ 2 2 2 1 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,0,0,1,1,2,1,0,1,2,-1,0,1,0,1,0] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,0,1,1,2,1,0,1,2,-1,0,1,0,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,1,1,1,1,2,1,1,1,2,-1,0,2,1,1,1] |
Phi of K* |
[-2,-1,0,0,1,2,1,1,2,2,2,1,0,1,1,-1,1,1,1,1,1] |
Phi of -K* |
[-2,-1,0,0,1,2,0,1,1,2,2,0,0,1,1,-1,0,1,1,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+23z+31 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2-2w^3z+25w^2z+31w |
Inner characteristic polynomial |
t^6+15t^4+27t^2+4 |
Outer characteristic polynomial |
t^7+25t^5+57t^3+13t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 10*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 - 2*K2**2 + 4*K2 + K3 + K4 + 6 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 736*K1**4*K2 - 1088*K1**4 + 448*K1**3*K2*K3 - 160*K1**3*K3 - 256*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 2400*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 256*K1**2*K2**2*K4**2 + 288*K1**2*K2**2*K4 - 7792*K1**2*K2**2 + 64*K1**2*K2*K4**2 - 1280*K1**2*K2*K4 + 7784*K1**2*K2 - 256*K1**2*K3**2 - 240*K1**2*K4**2 - 5784*K1**2 - 128*K1*K2**3*K3*K4 + 1568*K1*K2**3*K3 + 864*K1*K2**2*K3*K4 - 1504*K1*K2**2*K3 + 224*K1*K2**2*K4*K5 - 352*K1*K2**2*K5 + 64*K1*K2*K3**3 + 160*K1*K2*K3*K4**2 - 800*K1*K2*K3*K4 - 96*K1*K2*K3*K6 + 7096*K1*K2*K3 - 96*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 1616*K1*K3*K4 + 432*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 - 32*K2**4*K4**2 + 416*K2**4*K4 - 2152*K2**4 + 32*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1168*K2**2*K3**2 + 32*K2**2*K4**3 - 752*K2**2*K4**2 + 2232*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 3294*K2**2 - 96*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 696*K2*K3*K5 - 32*K2*K4**2*K6 + 272*K2*K4*K6 + 8*K2*K5*K7 + 8*K2*K6*K8 - 32*K3**4 - 32*K3**2*K4**2 + 40*K3**2*K6 - 2008*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 988*K4**2 - 176*K5**2 - 50*K6**2 - 2*K8**2 + 4380 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |