Gauss code |
O1O2O3O4O5U2O6U1U5U4U6U3 |
R3 orbit |
{'O1O2O3O4O5U2O6U1U5U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U6U2U1U5O6U4 |
Gauss code of K* |
O1O2O3O4O5U1U6U5U3U2O6U4 |
Gauss code of -K* |
O1O2O3O4O5U2O6U4U3U1U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 2 1 1 3],[ 4 0 0 5 3 2 3],[ 3 0 0 3 2 1 2],[-2 -5 -3 0 -1 -1 2],[-1 -3 -2 1 0 0 2],[-1 -2 -1 1 0 0 1],[-3 -3 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 1 1 -3 -4],[-3 0 -2 -1 -2 -2 -3],[-2 2 0 -1 -1 -3 -5],[-1 1 1 0 0 -1 -2],[-1 2 1 0 0 -2 -3],[ 3 2 3 1 2 0 0],[ 4 3 5 2 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,-1,3,4,2,1,2,2,3,1,1,3,5,0,1,2,2,3,0] |
Phi over symmetry |
[-4,-3,1,1,2,3,0,2,3,5,3,1,2,3,2,0,1,1,1,2,2] |
Phi of -K |
[-4,-3,1,1,2,3,1,2,3,1,4,2,3,2,4,0,0,0,0,1,-1] |
Phi of K* |
[-3,-2,-1,-1,3,4,-1,0,1,4,4,0,0,2,1,0,2,2,3,3,1] |
Phi of -K* |
[-4,-3,1,1,2,3,0,2,3,5,3,1,2,3,2,0,1,1,1,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w |
Inner characteristic polynomial |
t^6+76t^4+15t^2 |
Outer characteristic polynomial |
t^7+116t^5+112t^3+8t |
Flat arrow polynomial |
-2*K1**2 - 4*K1*K2 + 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial |
-320*K1**3*K3 + 1280*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 3664*K1**2*K2**2 - 512*K1**2*K2*K4 + 5064*K1**2*K2 - 320*K1**2*K3**2 - 80*K1**2*K4**2 - 5692*K1**2 + 448*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 32*K1*K2**2*K5 - 640*K1*K2*K3*K4 + 6224*K1*K2*K3 - 32*K1*K2*K4*K5 + 1984*K1*K3*K4 + 432*K1*K4*K5 + 56*K1*K5*K6 + 8*K1*K6*K7 - 904*K2**4 - 672*K2**2*K3**2 - 48*K2**2*K4**2 + 1416*K2**2*K4 - 3692*K2**2 - 96*K2*K3**2*K4 + 704*K2*K3*K5 + 120*K2*K4*K6 - 96*K3**4 - 32*K3**2*K4**2 + 168*K3**2*K6 - 2728*K3**2 + 40*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1202*K4**2 - 292*K5**2 - 108*K6**2 - 16*K7**2 - 2*K8**2 + 4418 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |