Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,1,2,-1,1,-1,0,0,0,0,0,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1888'] |
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971'] |
Outer characteristic polynomial of the knot is: t^7+31t^5+56t^3+8t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1161', '6.1888'] |
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 2080*K1**4 + 32*K1**3*K2*K3 - 256*K1**3*K3 - 2864*K1**2*K2**2 - 224*K1**2*K2*K4 + 6448*K1**2*K2 - 32*K1**2*K3**2 - 4172*K1**2 - 96*K1*K2**2*K3 + 4192*K1*K2*K3 + 288*K1*K3*K4 - 312*K2**4 + 560*K2**2*K4 - 3320*K2**2 - 1332*K3**2 - 262*K4**2 + 3332 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1888'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72427', 'vk6.72430', 'vk6.72479', 'vk6.72482', 'vk6.72485', 'vk6.72492', 'vk6.72842', 'vk6.72844', 'vk6.72847', 'vk6.72853', 'vk6.72903', 'vk6.72905', 'vk6.74454', 'vk6.74459', 'vk6.74466', 'vk6.74469', 'vk6.75067', 'vk6.75074', 'vk6.76965', 'vk6.77780', 'vk6.77788', 'vk6.77974', 'vk6.79454', 'vk6.79466', 'vk6.79902', 'vk6.79917', 'vk6.79919', 'vk6.79922', 'vk6.80928', 'vk6.80937', 'vk6.87233', 'vk6.89358'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1U4O5U6O4U3O6U2U5 |
R3 orbit | {'O1O2O3U1U4O5U6O4U3O6U2U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U2O5U1O6U5O4U6U3 |
Gauss code of K* | O1O2U3O4U2O5U4O6O3U1U6U5 |
Gauss code of -K* | O1O2U3O4U5O3U1O5O6U4U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 1 0 1 0],[ 2 0 2 1 2 2 1],[ 0 -2 0 1 -1 1 0],[-1 -1 -1 0 -1 -1 0],[ 0 -2 1 1 0 2 -1],[-1 -2 -1 1 -2 0 -1],[ 0 -1 0 0 1 1 0]] |
Primitive based matrix | [[ 0 1 1 0 0 0 -2],[-1 0 1 -1 -1 -2 -2],[-1 -1 0 0 -1 -1 -1],[ 0 1 0 0 0 1 -1],[ 0 1 1 0 0 -1 -2],[ 0 2 1 -1 1 0 -2],[ 2 2 1 1 2 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,0,2,-1,1,1,2,2,0,1,1,1,0,-1,1,1,2,2] |
Phi over symmetry | [-2,0,0,0,1,1,0,0,1,1,2,-1,1,-1,0,0,0,0,0,1,-1] |
Phi of -K | [-2,0,0,0,1,1,0,0,1,1,2,-1,1,-1,0,0,0,0,0,1,-1] |
Phi of K* | [-1,-1,0,0,0,2,-1,0,0,1,2,-1,0,0,1,1,-1,0,0,0,1] |
Phi of -K* | [-2,0,0,0,1,1,1,2,2,1,2,0,1,0,1,-1,1,1,1,2,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | z^2+18z+33 |
Enhanced Jones-Krushkal polynomial | w^3z^2+18w^2z+33w |
Inner characteristic polynomial | t^6+25t^4+35t^2+4 |
Outer characteristic polynomial | t^7+31t^5+56t^3+8t |
Flat arrow polynomial | -6*K1**2 + 3*K2 + 4 |
2-strand cable arrow polynomial | 96*K1**4*K2 - 2080*K1**4 + 32*K1**3*K2*K3 - 256*K1**3*K3 - 2864*K1**2*K2**2 - 224*K1**2*K2*K4 + 6448*K1**2*K2 - 32*K1**2*K3**2 - 4172*K1**2 - 96*K1*K2**2*K3 + 4192*K1*K2*K3 + 288*K1*K3*K4 - 312*K2**4 + 560*K2**2*K4 - 3320*K2**2 - 1332*K3**2 - 262*K4**2 + 3332 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}]] |
If K is slice | False |