Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1886

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,2,3,-1,1,0,0,0,1,0,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1886']
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962']
Outer characteristic polynomial of the knot is: t^7+23t^5+43t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1886']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 64*K1**4*K2**2 + 768*K1**4*K2 - 3728*K1**4 + 224*K1**3*K2*K3 - 800*K1**3*K3 + 32*K1**2*K2**3 - 4016*K1**2*K2**2 - 32*K1**2*K2*K4 + 9208*K1**2*K2 - 368*K1**2*K3**2 - 4968*K1**2 - 128*K1*K2**2*K3 + 4984*K1*K2*K3 + 352*K1*K3*K4 - 88*K2**4 + 104*K2**2*K4 - 3856*K2**2 - 1400*K3**2 - 102*K4**2 + 3940
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1886']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16555', 'vk6.16648', 'vk6.18141', 'vk6.18475', 'vk6.22958', 'vk6.23079', 'vk6.24600', 'vk6.25011', 'vk6.34947', 'vk6.35068', 'vk6.36739', 'vk6.37156', 'vk6.42520', 'vk6.42631', 'vk6.44011', 'vk6.44321', 'vk6.54802', 'vk6.54886', 'vk6.55955', 'vk6.56253', 'vk6.59234', 'vk6.59312', 'vk6.60493', 'vk6.60857', 'vk6.64776', 'vk6.64841', 'vk6.65620', 'vk6.65925', 'vk6.68078', 'vk6.68143', 'vk6.68695', 'vk6.68904']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U3O4U2O6U5U6
R3 orbit {'O1O2O3U1U4O5U3O4U2O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U2O6U1O5U6U3
Gauss code of K* O1O2U3O4U2O5U6O3O6U1U5U4
Gauss code of -K* O1O2U1O3U4O5U2O4O6U5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 0 1],[ 2 0 2 1 1 2 0],[ 0 -2 0 1 -1 1 1],[-1 -1 -1 0 -1 0 1],[ 0 -1 1 1 0 0 0],[ 0 -2 -1 0 0 0 1],[-1 0 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 0 -1 0],[ 0 0 1 0 0 -1 -2],[ 0 1 0 0 0 1 -1],[ 0 1 1 1 -1 0 -2],[ 2 1 0 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,-1,0,1,1,1,1,0,1,0,0,1,2,-1,1,2]
Phi over symmetry [-2,0,0,0,1,1,0,0,1,2,3,-1,1,0,0,0,1,0,0,1,-1]
Phi of -K [-2,0,0,0,1,1,0,0,1,2,3,-1,1,0,0,0,1,0,0,1,-1]
Phi of K* [-1,-1,0,0,0,2,-1,0,0,1,3,0,1,0,2,1,-1,0,0,0,1]
Phi of -K* [-2,0,0,0,1,1,1,2,2,0,1,0,1,0,1,-1,1,0,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial z^2+20z+37
Enhanced Jones-Krushkal polynomial w^3z^2+20w^2z+37w
Inner characteristic polynomial t^6+17t^4+22t^2+1
Outer characteristic polynomial t^7+23t^5+43t^3+6t
Flat arrow polynomial -10*K1**2 + 5*K2 + 6
2-strand cable arrow polynomial -64*K1**6 - 64*K1**4*K2**2 + 768*K1**4*K2 - 3728*K1**4 + 224*K1**3*K2*K3 - 800*K1**3*K3 + 32*K1**2*K2**3 - 4016*K1**2*K2**2 - 32*K1**2*K2*K4 + 9208*K1**2*K2 - 368*K1**2*K3**2 - 4968*K1**2 - 128*K1*K2**2*K3 + 4984*K1*K2*K3 + 352*K1*K3*K4 - 88*K2**4 + 104*K2**2*K4 - 3856*K2**2 - 1400*K3**2 - 102*K4**2 + 3940
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact