Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1885

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,1,3,0,1,1,0,0,0,1,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1885']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+21t^5+36t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1885']
2-strand cable arrow polynomial of the knot is: 128*K1**4*K2 - 1424*K1**4 - 288*K1**3*K3 + 256*K1**2*K2**3 - 2480*K1**2*K2**2 + 6536*K1**2*K2 - 144*K1**2*K3**2 - 4916*K1**2 - 352*K1*K2**2*K3 + 3560*K1*K2*K3 + 264*K1*K3*K4 - 360*K2**4 + 368*K2**2*K4 - 3224*K2**2 - 1140*K3**2 - 134*K4**2 + 3348
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1885']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16495', 'vk6.16588', 'vk6.18093', 'vk6.18429', 'vk6.22926', 'vk6.23023', 'vk6.24544', 'vk6.24961', 'vk6.34899', 'vk6.35004', 'vk6.36683', 'vk6.37105', 'vk6.42464', 'vk6.42577', 'vk6.43963', 'vk6.44278', 'vk6.54738', 'vk6.54835', 'vk6.55918', 'vk6.56209', 'vk6.59202', 'vk6.59267', 'vk6.60447', 'vk6.60808', 'vk6.64750', 'vk6.64809', 'vk6.65567', 'vk6.65877', 'vk6.68046', 'vk6.68111', 'vk6.68649', 'vk6.68862']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U2O4U3O6U5U6
R3 orbit {'O1O2O3U1U4O5U2O4U3O6U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O4U1O6U2O5U6U3
Gauss code of K* O1O2U3O4U2O5U6O3O6U1U4U5
Gauss code of -K* O1O2U1O3U4O5U2O4O6U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 0 1],[ 2 0 1 2 1 2 0],[ 0 -1 0 0 0 1 1],[-1 -2 0 0 -1 0 1],[ 0 -1 0 1 0 0 0],[ 0 -2 -1 0 0 0 1],[-1 0 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 1 0 0 -1 -2],[-1 -1 0 -1 -1 0 0],[ 0 0 1 0 1 0 -1],[ 0 0 1 -1 0 0 -2],[ 0 1 0 0 0 0 -1],[ 2 2 0 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,-1,0,0,1,2,1,1,0,0,-1,0,1,0,2,1]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,1,3,0,1,1,0,0,0,1,1,0,-1]
Phi of -K [-2,0,0,0,1,1,0,1,1,1,3,0,1,1,0,0,0,1,1,0,-1]
Phi of K* [-1,-1,0,0,0,2,-1,0,0,1,3,1,1,0,1,-1,0,0,0,1,1]
Phi of -K* [-2,0,0,0,1,1,1,1,2,0,2,0,0,0,1,1,1,0,1,0,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+22z+33
Enhanced Jones-Krushkal polynomial 3w^3z^2+22w^2z+33w
Inner characteristic polynomial t^6+15t^4+19t^2
Outer characteristic polynomial t^7+21t^5+36t^3+5t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial 128*K1**4*K2 - 1424*K1**4 - 288*K1**3*K3 + 256*K1**2*K2**3 - 2480*K1**2*K2**2 + 6536*K1**2*K2 - 144*K1**2*K3**2 - 4916*K1**2 - 352*K1*K2**2*K3 + 3560*K1*K2*K3 + 264*K1*K3*K4 - 360*K2**4 + 368*K2**2*K4 - 3224*K2**2 - 1140*K3**2 - 134*K4**2 + 3348
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}]]
If K is slice False
Contact