Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1878

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,1,1,1,1,2,-1,-1,0,2,0,1,1,2,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1878']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+27t^5+125t^3+27t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1878']
2-strand cable arrow polynomial of the knot is: -16*K1**4 - 1024*K1**2*K2**4 + 1920*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5696*K1**2*K2**2 - 64*K1**2*K2*K4 + 3848*K1**2*K2 - 16*K1**2*K3**2 - 2532*K1**2 + 1408*K1*K2**3*K3 - 1088*K1*K2**2*K3 - 64*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 4920*K1*K2*K3 + 168*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1432*K2**4 - 624*K2**2*K3**2 - 48*K2**2*K4**2 + 864*K2**2*K4 - 1246*K2**2 + 240*K2*K3*K5 + 16*K2*K4*K6 - 1256*K3**2 - 126*K4**2 - 28*K5**2 - 2*K6**2 + 1940
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1878']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.70497', 'vk6.70508', 'vk6.70556', 'vk6.70571', 'vk6.70703', 'vk6.70724', 'vk6.70808', 'vk6.70823', 'vk6.70974', 'vk6.70995', 'vk6.71052', 'vk6.71079', 'vk6.71193', 'vk6.71214', 'vk6.71272', 'vk6.71285', 'vk6.71759', 'vk6.72180', 'vk6.74064', 'vk6.74149', 'vk6.74625', 'vk6.74717', 'vk6.76209', 'vk6.76226', 'vk6.77554', 'vk6.79068', 'vk6.79168', 'vk6.80648', 'vk6.81260', 'vk6.87021', 'vk6.87940', 'vk6.89132']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O6U1O5O4U6U2U3
R3 orbit {'O1O2O3U4U5O6U1O5O4U6U2U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U2U4O5O6U3O4U6U5
Gauss code of K* O1O2O3U4U2U3O5O6U1O4U6U5
Gauss code of -K* O1O2O3U4U5O6U3O5O4U1U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 0 0 -1],[ 1 0 0 1 2 1 -1],[ 0 0 0 1 1 1 -2],[-2 -1 -1 0 -1 -1 -2],[ 0 -2 -1 1 0 0 0],[ 0 -1 -1 1 0 0 -1],[ 1 1 2 2 0 1 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 -1 -1 -1 -1 -2],[ 0 1 0 1 1 0 -2],[ 0 1 -1 0 0 -1 -1],[ 0 1 -1 0 0 -2 0],[ 1 1 0 1 2 0 -1],[ 1 2 2 1 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,1,1,1,1,2,-1,-1,0,2,0,1,1,2,0,1]
Phi over symmetry [-2,0,0,0,1,1,1,1,1,1,2,-1,-1,0,2,0,1,1,2,0,1]
Phi of -K [-1,-1,0,0,0,2,-1,-1,0,1,1,1,0,-1,2,-1,-1,1,0,1,1]
Phi of K* [-2,0,0,0,1,1,1,1,1,1,2,-1,0,0,0,1,-1,1,1,-1,1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,1,2,1,2,1,0,2,1,1,1,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial z^2+6z+9
Enhanced Jones-Krushkal polynomial -4w^4z^2+5w^3z^2-16w^3z+22w^2z+9w
Inner characteristic polynomial t^6+21t^4+74t^2+9
Outer characteristic polynomial t^7+27t^5+125t^3+27t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -16*K1**4 - 1024*K1**2*K2**4 + 1920*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 5696*K1**2*K2**2 - 64*K1**2*K2*K4 + 3848*K1**2*K2 - 16*K1**2*K3**2 - 2532*K1**2 + 1408*K1*K2**3*K3 - 1088*K1*K2**2*K3 - 64*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 4920*K1*K2*K3 + 168*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1432*K2**4 - 624*K2**2*K3**2 - 48*K2**2*K4**2 + 864*K2**2*K4 - 1246*K2**2 + 240*K2*K3*K5 + 16*K2*K4*K6 - 1256*K3**2 - 126*K4**2 - 28*K5**2 - 2*K6**2 + 1940
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact