Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,1,2,0,1,1,0,1,1,0,0,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1874'] |
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.241', '6.341', '6.542', '6.567', '6.699', '6.713', '6.771', '6.791', '6.1025', '6.1039', '6.1041', '6.1072', '6.1077', '6.1121', '6.1123', '6.1499', '6.1502', '6.1531', '6.1645', '6.1648', '6.1726', '6.1727', '6.1761', '6.1784', '6.1807', '6.1823', '6.1832', '6.1869', '6.1873', '6.1874'] |
Outer characteristic polynomial of the knot is: t^7+17t^5+44t^3 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1874'] |
2-strand cable arrow polynomial of the knot is: -320*K1**4*K2**2 + 896*K1**4*K2 - 2224*K1**4 + 224*K1**3*K2*K3 + 32*K1**3*K3*K4 + 512*K1**2*K2**3 - 3328*K1**2*K2**2 + 4480*K1**2*K2 - 464*K1**2*K3**2 - 64*K1**2*K4**2 - 2812*K1**2 + 160*K1*K2**3*K3 + 3776*K1*K2*K3 + 664*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 696*K2**4 - 368*K2**2*K3**2 - 48*K2**2*K4**2 + 568*K2**2*K4 - 2334*K2**2 + 224*K2*K3*K5 + 16*K2*K4*K6 - 1384*K3**2 - 426*K4**2 - 52*K5**2 - 2*K6**2 + 2888 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1874'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17108', 'vk6.17349', 'vk6.20579', 'vk6.21987', 'vk6.23501', 'vk6.23838', 'vk6.28044', 'vk6.29502', 'vk6.35642', 'vk6.36081', 'vk6.39447', 'vk6.41648', 'vk6.43008', 'vk6.43318', 'vk6.46035', 'vk6.47703', 'vk6.55259', 'vk6.55509', 'vk6.57445', 'vk6.58615', 'vk6.59667', 'vk6.60013', 'vk6.62120', 'vk6.63088', 'vk6.65059', 'vk6.65252', 'vk6.66975', 'vk6.67839', 'vk6.68322', 'vk6.68470', 'vk6.69593', 'vk6.70285'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4U2O5U1O6O4U6U5U3 |
R3 orbit | {'O1O2O3U4U2O5U1O6O4U6U5U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U4U5O6O5U3O4U2U6 |
Gauss code of K* | O1O2O3U4U5U3O6O5U2O4U1U6 |
Gauss code of -K* | O1O2O3U4U3O5U2O6O4U1U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 2 0 0 -1],[ 1 0 0 2 0 0 -1],[ 0 0 0 0 0 -1 -1],[-2 -2 0 0 0 -1 -1],[ 0 0 0 0 0 -1 -1],[ 0 0 1 1 1 0 0],[ 1 1 1 1 1 0 0]] |
Primitive based matrix | [[ 0 2 0 0 0 -1 -1],[-2 0 0 0 -1 -1 -2],[ 0 0 0 0 -1 -1 0],[ 0 0 0 0 -1 -1 0],[ 0 1 1 1 0 0 0],[ 1 1 1 1 0 0 1],[ 1 2 0 0 0 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,0,0,0,1,1,0,0,1,1,2,0,1,1,0,1,1,0,0,0,-1] |
Phi over symmetry | [-2,0,0,0,1,1,0,0,1,1,2,0,1,1,0,1,1,0,0,0,-1] |
Phi of -K | [-1,-1,0,0,0,2,-1,0,0,1,2,1,1,1,1,0,1,2,1,2,1] |
Phi of K* | [-2,0,0,0,1,1,1,2,2,1,2,1,1,1,1,0,1,0,1,0,-1] |
Phi of -K* | [-1,-1,0,0,0,2,-1,0,0,0,2,0,1,1,1,1,1,1,0,0,0] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 15z+31 |
Enhanced Jones-Krushkal polynomial | -2w^3z+17w^2z+31w |
Inner characteristic polynomial | t^6+11t^4+19t^2 |
Outer characteristic polynomial | t^7+17t^5+44t^3 |
Flat arrow polynomial | 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial | -320*K1**4*K2**2 + 896*K1**4*K2 - 2224*K1**4 + 224*K1**3*K2*K3 + 32*K1**3*K3*K4 + 512*K1**2*K2**3 - 3328*K1**2*K2**2 + 4480*K1**2*K2 - 464*K1**2*K3**2 - 64*K1**2*K4**2 - 2812*K1**2 + 160*K1*K2**3*K3 + 3776*K1*K2*K3 + 664*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 696*K2**4 - 368*K2**2*K3**2 - 48*K2**2*K4**2 + 568*K2**2*K4 - 2334*K2**2 + 224*K2*K3*K5 + 16*K2*K4*K6 - 1384*K3**2 - 426*K4**2 - 52*K5**2 - 2*K6**2 + 2888 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}], [{6}, {5}, {4}, {2, 3}, {1}], [{6}, {5}, {4}, {3}, {1, 2}], [{6}, {5}, {4}, {3}, {2}, {1}]] |
If K is slice | False |