Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1870

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,1,1,0,1,0,1,0,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1870']
Arrow polynomial of the knot is: -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.425', '6.655', '6.755', '6.769', '6.792', '6.1240', '6.1494', '6.1522', '6.1534', '6.1587', '6.1707', '6.1746', '6.1747', '6.1786', '6.1814', '6.1828', '6.1835', '6.1854', '6.1870']
Outer characteristic polynomial of the knot is: t^7+15t^5+31t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1870']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 384*K1**4*K2 - 2112*K1**4 + 32*K1**3*K2*K3 - 384*K1**3*K3 - 2928*K1**2*K2**2 - 96*K1**2*K2*K4 + 6936*K1**2*K2 - 384*K1**2*K3**2 - 48*K1**2*K4**2 - 4728*K1**2 - 672*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 4936*K1*K2*K3 + 928*K1*K3*K4 + 80*K1*K4*K5 - 440*K2**4 - 320*K2**2*K3**2 - 48*K2**2*K4**2 + 768*K2**2*K4 - 3612*K2**2 + 272*K2*K3*K5 + 32*K2*K4*K6 - 1700*K3**2 - 446*K4**2 - 68*K5**2 - 4*K6**2 + 3748
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1870']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16947', 'vk6.17188', 'vk6.20541', 'vk6.21942', 'vk6.23347', 'vk6.23640', 'vk6.27999', 'vk6.29466', 'vk6.35387', 'vk6.35806', 'vk6.39399', 'vk6.41592', 'vk6.42864', 'vk6.43141', 'vk6.45979', 'vk6.47655', 'vk6.55110', 'vk6.55369', 'vk6.57405', 'vk6.58580', 'vk6.59512', 'vk6.59810', 'vk6.62076', 'vk6.63058', 'vk6.64955', 'vk6.65161', 'vk6.66945', 'vk6.67806', 'vk6.68248', 'vk6.68389', 'vk6.69560', 'vk6.70257']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U1O5U2O6O4U6U5U3
R3 orbit {'O1O2O3U4U1O5U2O6O4U6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U5O6O5U2O4U3U6
Gauss code of K* O1O2O3U4U5U3O6O4U2O5U1U6
Gauss code of -K* O1O2O3U4U3O5U2O6O4U1U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 0 0 -1],[ 1 0 1 1 0 0 -1],[ 0 -1 0 1 0 0 -1],[-2 -1 -1 0 0 -1 -1],[ 0 0 0 0 0 -1 -1],[ 0 0 0 1 1 0 0],[ 1 1 1 1 1 0 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -1 -1 -1],[ 0 0 0 0 -1 0 -1],[ 0 1 0 0 0 -1 -1],[ 0 1 1 0 0 0 0],[ 1 1 0 1 0 0 -1],[ 1 1 1 1 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,1,1,1,0,1,0,1,0,1,1,0,0,1]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,1,1,0,1,0,1,0,1,1,0,0,1]
Phi of -K [-1,-1,0,0,0,2,-1,0,0,1,2,0,1,1,2,0,0,1,1,2,1]
Phi of K* [-2,0,0,0,1,1,1,1,2,2,2,0,0,0,0,1,1,1,0,1,1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,0,1,1,0,1,1,1,1,0,1,0,0,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial z^2+18z+33
Enhanced Jones-Krushkal polynomial w^3z^2+18w^2z+33w
Inner characteristic polynomial t^6+9t^4+12t^2
Outer characteristic polynomial t^7+15t^5+31t^3+4t
Flat arrow polynomial -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
2-strand cable arrow polynomial -64*K1**6 + 384*K1**4*K2 - 2112*K1**4 + 32*K1**3*K2*K3 - 384*K1**3*K3 - 2928*K1**2*K2**2 - 96*K1**2*K2*K4 + 6936*K1**2*K2 - 384*K1**2*K3**2 - 48*K1**2*K4**2 - 4728*K1**2 - 672*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 4936*K1*K2*K3 + 928*K1*K3*K4 + 80*K1*K4*K5 - 440*K2**4 - 320*K2**2*K3**2 - 48*K2**2*K4**2 + 768*K2**2*K4 - 3612*K2**2 + 272*K2*K3*K5 + 32*K2*K4*K6 - 1700*K3**2 - 446*K4**2 - 68*K5**2 - 4*K6**2 + 3748
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]]
If K is slice False
Contact