Gauss code |
O1O2O3U4U5O6U2O4O5U1U6U3 |
R3 orbit |
{'O1O2O3U4U5O6U2O4O5U1U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4U3O5O6U2O4U5U6 |
Gauss code of K* |
O1O2O3U1U4U3O5O6U2O4U5U6 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 2 -1 1 0],[ 2 0 2 3 0 2 0],[ 0 -2 0 0 0 1 -1],[-2 -3 0 0 -2 0 -2],[ 1 0 0 2 0 1 1],[-1 -2 -1 0 -1 0 0],[ 0 0 1 2 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 0 0 -2 -2 -3],[-1 0 0 -1 0 -1 -2],[ 0 0 1 0 -1 0 -2],[ 0 2 0 1 0 -1 0],[ 1 2 1 0 1 0 0],[ 2 3 2 2 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,0,0,2,2,3,1,0,1,2,1,0,2,1,0,0] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,0,2,2,3,1,0,1,2,1,0,2,1,0,0] |
Phi of -K |
[-2,-1,0,0,1,2,1,0,2,1,1,1,0,1,1,1,0,2,1,0,1] |
Phi of K* |
[-2,-1,0,0,1,2,1,0,2,1,1,1,0,1,1,1,0,2,1,0,1] |
Phi of -K* |
[-2,-1,0,0,1,2,0,0,2,2,3,1,0,1,2,1,0,2,1,0,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+29t^4+88t^2+4 |
Outer characteristic polynomial |
t^7+39t^5+150t^3+8t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 8*K1*K2 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
256*K1**4*K2**3 - 768*K1**4*K2**2 + 1024*K1**4*K2 - 1312*K1**4 - 256*K1**3*K2**2*K3 + 1216*K1**3*K2*K3 - 384*K1**3*K3 - 1024*K1**2*K2**4 + 3392*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 12160*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 11216*K1**2*K2 - 480*K1**2*K3**2 - 32*K1**2*K4**2 - 7456*K1**2 + 2752*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 3328*K1*K2**2*K3 - 640*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 11088*K1*K2*K3 + 800*K1*K3*K4 + 80*K1*K4*K5 - 64*K2**6 + 128*K2**4*K4 - 4480*K2**4 - 64*K2**3*K6 - 1344*K2**2*K3**2 - 160*K2**2*K4**2 + 3440*K2**2*K4 - 3948*K2**2 - 64*K2*K3**2*K4 + 512*K2*K3*K5 + 80*K2*K4*K6 - 2728*K3**2 - 520*K4**2 - 104*K5**2 - 4*K6**2 + 5590 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
True |