Gauss code |
O1O2O3O4O5U2O6U1U3U5U6U4 |
R3 orbit |
{'O1O2O3O4O5U2O6U1U3U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U6U1U3U5O6U4 |
Gauss code of K* |
O1O2O3O4O5U1U6U2U5U3O6U4 |
Gauss code of -K* |
O1O2O3O4O5U2O6U3U1U4U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 -1 3 2 3],[ 4 0 0 2 5 3 3],[ 3 0 0 1 3 2 2],[ 1 -2 -1 0 3 1 2],[-3 -5 -3 -3 0 -1 1],[-2 -3 -2 -1 1 0 1],[-3 -3 -2 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 3 2 -1 -3 -4],[-3 0 1 -1 -3 -3 -5],[-3 -1 0 -1 -2 -2 -3],[-2 1 1 0 -1 -2 -3],[ 1 3 2 1 0 -1 -2],[ 3 3 2 2 1 0 0],[ 4 5 3 3 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-2,1,3,4,-1,1,3,3,5,1,2,2,3,1,2,3,1,2,0] |
Phi over symmetry |
[-4,-3,-1,2,3,3,0,2,3,3,5,1,2,2,3,1,2,3,1,1,-1] |
Phi of -K |
[-4,-3,-1,2,3,3,1,1,3,2,4,1,3,3,4,2,1,2,0,0,-1] |
Phi of K* |
[-3,-3,-2,1,3,4,-1,0,2,4,4,0,1,3,2,2,3,3,1,1,1] |
Phi of -K* |
[-4,-3,-1,2,3,3,0,2,3,3,5,1,2,2,3,1,2,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial |
11z+23 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+15w^2z+23w |
Inner characteristic polynomial |
t^6+82t^4+19t^2 |
Outer characteristic polynomial |
t^7+130t^5+124t^3 |
Flat arrow polynomial |
-2*K1**2 - 6*K1*K2 + 3*K1 - 2*K2**2 + K2 + 3*K3 + K4 + 3 |
2-strand cable arrow polynomial |
-320*K1**4 + 64*K1**3*K2*K3 + 64*K1**3*K3*K4 - 176*K1**2*K2**2 + 312*K1**2*K2 - 1152*K1**2*K3**2 - 176*K1**2*K4**2 - 1588*K1**2 + 32*K1*K2*K3**3 + 2544*K1*K2*K3 + 32*K1*K3**3*K4 + 1936*K1*K3*K4 + 176*K1*K4*K5 + 32*K1*K5*K6 - 8*K2**4 - 96*K2**2*K3**2 - 24*K2**2*K4**2 + 208*K2**2*K4 - 1282*K2**2 + 144*K2*K3*K5 + 72*K2*K4*K6 + 8*K2*K5*K7 - 160*K3**4 - 96*K3**2*K4**2 + 80*K3**2*K6 - 1584*K3**2 + 64*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 838*K4**2 - 124*K5**2 - 54*K6**2 - 16*K7**2 - 2*K8**2 + 1926 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{6}, {4, 5}, {3}, {1, 2}]] |
If K is slice |
False |