Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1850

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,0,1,0,1,0,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1850']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+20t^5+42t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1850']
2-strand cable arrow polynomial of the knot is: 160*K1**4*K2 - 2192*K1**4 + 480*K1**3*K2*K3 + 32*K1**3*K3*K4 - 352*K1**3*K3 + 128*K1**2*K2**3 - 5872*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 992*K1**2*K2*K4 + 9544*K1**2*K2 - 528*K1**2*K3**2 - 80*K1**2*K4**2 - 6852*K1**2 + 352*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 224*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 8720*K1*K2*K3 + 1496*K1*K3*K4 + 128*K1*K4*K5 - 568*K2**4 - 256*K2**2*K3**2 - 48*K2**2*K4**2 + 1240*K2**2*K4 - 5292*K2**2 + 232*K2*K3*K5 + 32*K2*K4*K6 - 2744*K3**2 - 658*K4**2 - 60*K5**2 - 4*K6**2 + 5296
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1850']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11009', 'vk6.11088', 'vk6.12177', 'vk6.12284', 'vk6.18206', 'vk6.18541', 'vk6.24668', 'vk6.25090', 'vk6.30580', 'vk6.30675', 'vk6.31852', 'vk6.31899', 'vk6.36800', 'vk6.37254', 'vk6.44043', 'vk6.44383', 'vk6.51808', 'vk6.51875', 'vk6.52674', 'vk6.52768', 'vk6.56000', 'vk6.56273', 'vk6.60539', 'vk6.60879', 'vk6.63494', 'vk6.63538', 'vk6.63974', 'vk6.64018', 'vk6.65665', 'vk6.65947', 'vk6.68713', 'vk6.68921']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U4O5U3O6O4U1U5U6
R3 orbit {'O1O2O3U2U4O5U3O6O4U1U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U3O6O4U1O5U6U2
Gauss code of K* O1O2O3U1U4U5O4O6U2O5U3U6
Gauss code of -K* O1O2O3U4U1O5U2O4O6U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 0 1],[ 2 0 -1 2 1 1 1],[ 1 1 0 1 0 1 0],[-1 -2 -1 0 -1 0 0],[-1 -1 0 1 0 0 0],[ 0 -1 -1 0 0 0 1],[-1 -1 0 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 0 -1],[-1 -1 0 0 0 -1 -2],[-1 0 0 0 -1 0 -1],[ 0 0 0 1 0 -1 -1],[ 1 0 1 0 1 0 1],[ 2 1 2 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,0,0,1,0,0,1,2,1,0,1,1,1,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,0,1,0,1,0,0,1,0]
Phi of -K [-2,-1,0,1,1,1,2,1,1,2,2,0,1,2,2,1,0,1,0,1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,1,1,0,1,2,2,0,2,2,0,1,2]
Phi of -K* [-2,-1,0,1,1,1,-1,1,1,1,2,1,0,0,1,0,1,0,0,1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+12t^4+17t^2+1
Outer characteristic polynomial t^7+20t^5+42t^3+8t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial 160*K1**4*K2 - 2192*K1**4 + 480*K1**3*K2*K3 + 32*K1**3*K3*K4 - 352*K1**3*K3 + 128*K1**2*K2**3 - 5872*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 992*K1**2*K2*K4 + 9544*K1**2*K2 - 528*K1**2*K3**2 - 80*K1**2*K4**2 - 6852*K1**2 + 352*K1*K2**3*K3 - 1024*K1*K2**2*K3 - 224*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 8720*K1*K2*K3 + 1496*K1*K3*K4 + 128*K1*K4*K5 - 568*K2**4 - 256*K2**2*K3**2 - 48*K2**2*K4**2 + 1240*K2**2*K4 - 5292*K2**2 + 232*K2*K3*K5 + 32*K2*K4*K6 - 2744*K3**2 - 658*K4**2 - 60*K5**2 - 4*K6**2 + 5296
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}]]
If K is slice False
Contact