Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1840

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,1,2,1,1,1,0,0,1,1,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1840']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+24t^5+47t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1840']
2-strand cable arrow polynomial of the knot is: -16*K1**4 + 32*K1**3*K2*K3 - 192*K1**2*K2**4 + 352*K1**2*K2**3 - 4208*K1**2*K2**2 - 448*K1**2*K2*K4 + 3368*K1**2*K2 - 112*K1**2*K3**2 - 3204*K1**2 + 608*K1*K2**3*K3 - 320*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5488*K1*K2*K3 + 968*K1*K3*K4 + 72*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 256*K2**4*K4 - 1384*K2**4 - 448*K2**2*K3**2 - 528*K2**2*K4**2 + 1968*K2**2*K4 - 2638*K2**2 + 264*K2*K3*K5 + 304*K2*K4*K6 + 8*K3**2*K6 - 1936*K3**2 - 986*K4**2 - 76*K5**2 - 66*K6**2 + 3104
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1840']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11073', 'vk6.11151', 'vk6.12239', 'vk6.12346', 'vk6.18330', 'vk6.18668', 'vk6.24767', 'vk6.25226', 'vk6.30648', 'vk6.30741', 'vk6.31880', 'vk6.31949', 'vk6.36945', 'vk6.37409', 'vk6.44140', 'vk6.44462', 'vk6.51872', 'vk6.51919', 'vk6.52741', 'vk6.52852', 'vk6.56108', 'vk6.56328', 'vk6.60625', 'vk6.60959', 'vk6.63530', 'vk6.63574', 'vk6.64012', 'vk6.64056', 'vk6.65749', 'vk6.66015', 'vk6.68761', 'vk6.68970']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U3O6O4U6U2U5
R3 orbit {'O1O2O3U1U4O5U3O6O4U6U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U5O6O5U1O4U6U3
Gauss code of K* O1O2O3U4U2U5O4O6U3O5U1U6
Gauss code of -K* O1O2O3U4U3O5U1O4O6U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 1 1 -1],[ 2 0 2 1 1 2 0],[ 0 -2 0 1 0 1 -1],[-1 -1 -1 0 -1 0 -1],[-1 -1 0 1 0 0 -1],[-1 -2 -1 0 0 0 0],[ 1 0 1 1 1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 -1 -1],[-1 -1 0 0 -1 -1 -1],[-1 0 0 0 -1 0 -2],[ 0 0 1 1 0 -1 -2],[ 1 1 1 0 1 0 0],[ 2 1 1 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,0,1,1,0,1,1,1,1,0,2,1,2,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,1,2,1,1,1,0,0,1,1,1,0,0]
Phi of -K [-2,-1,0,1,1,1,1,0,1,2,2,0,2,1,1,0,0,1,0,0,1]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,2,0,1,1,2,0,2,1,0,0,1]
Phi of -K* [-2,-1,0,1,1,1,0,2,1,1,2,1,1,1,0,0,1,1,1,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial 4w^3z^2-8w^3z+25w^2z+19w
Inner characteristic polynomial t^6+16t^4+24t^2
Outer characteristic polynomial t^7+24t^5+47t^3+11t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -16*K1**4 + 32*K1**3*K2*K3 - 192*K1**2*K2**4 + 352*K1**2*K2**3 - 4208*K1**2*K2**2 - 448*K1**2*K2*K4 + 3368*K1**2*K2 - 112*K1**2*K3**2 - 3204*K1**2 + 608*K1*K2**3*K3 - 320*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5488*K1*K2*K3 + 968*K1*K3*K4 + 72*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 256*K2**4*K4 - 1384*K2**4 - 448*K2**2*K3**2 - 528*K2**2*K4**2 + 1968*K2**2*K4 - 2638*K2**2 + 264*K2*K3*K5 + 304*K2*K4*K6 + 8*K3**2*K6 - 1936*K3**2 - 986*K4**2 - 76*K5**2 - 66*K6**2 + 3104
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact