Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1838

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,0,2,2,2,0,1,1,2,0,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1838']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+24t^5+49t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1838']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 192*K1**4*K2 - 624*K1**4 + 64*K1**3*K2*K3 - 352*K1**3*K3 + 512*K1**2*K2**3 - 4176*K1**2*K2**2 - 448*K1**2*K2*K4 + 6136*K1**2*K2 - 144*K1**2*K3**2 - 5096*K1**2 + 416*K1*K2**3*K3 - 768*K1*K2**2*K3 - 128*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 6088*K1*K2*K3 + 672*K1*K3*K4 + 40*K1*K4*K5 - 1704*K2**4 - 752*K2**2*K3**2 - 48*K2**2*K4**2 + 1752*K2**2*K4 - 3284*K2**2 + 512*K2*K3*K5 + 32*K2*K4*K6 - 1852*K3**2 - 506*K4**2 - 68*K5**2 - 4*K6**2 + 3760
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1838']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73751', 'vk6.73760', 'vk6.73891', 'vk6.73897', 'vk6.75697', 'vk6.75708', 'vk6.75893', 'vk6.75899', 'vk6.78680', 'vk6.78696', 'vk6.78880', 'vk6.78892', 'vk6.80306', 'vk6.80320', 'vk6.80433', 'vk6.80442', 'vk6.81697', 'vk6.81706', 'vk6.81708', 'vk6.81801', 'vk6.82200', 'vk6.82456', 'vk6.82463', 'vk6.82466', 'vk6.82470', 'vk6.84426', 'vk6.84438', 'vk6.84444', 'vk6.87783', 'vk6.88117', 'vk6.88397', 'vk6.89634']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U3O6O4U2U5U6
R3 orbit {'O1O2O3U1U4O5U3O6O4U2U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U2O6O4U1O5U6U3
Gauss code of K* O1O2O3U4U1U5O4O6U2O5U3U6
Gauss code of -K* O1O2O3U4U1O5U2O4O6U5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 1 0 1],[ 2 0 2 1 1 2 1],[ 1 -2 0 1 0 1 1],[-1 -1 -1 0 -1 0 0],[-1 -1 0 1 0 0 0],[ 0 -2 -1 0 0 0 1],[-1 -1 -1 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 0 -1],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 -1 -1 -1],[ 0 0 0 1 0 -1 -2],[ 1 0 1 1 1 0 -2],[ 2 1 1 1 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,0,0,1,0,0,1,1,1,1,1,1,2,2]
Phi over symmetry [-2,-1,0,1,1,1,-1,0,2,2,2,0,1,1,2,0,1,1,0,0,1]
Phi of -K [-2,-1,0,1,1,1,-1,0,2,2,2,0,1,1,2,0,1,1,0,0,1]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,2,2,0,1,2,0,0,-1]
Phi of -K* [-2,-1,0,1,1,1,2,2,1,1,1,1,0,1,1,0,0,1,1,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+22z+25
Enhanced Jones-Krushkal polynomial -2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w
Inner characteristic polynomial t^6+16t^4+16t^2
Outer characteristic polynomial t^7+24t^5+49t^3+8t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 192*K1**4*K2 - 624*K1**4 + 64*K1**3*K2*K3 - 352*K1**3*K3 + 512*K1**2*K2**3 - 4176*K1**2*K2**2 - 448*K1**2*K2*K4 + 6136*K1**2*K2 - 144*K1**2*K3**2 - 5096*K1**2 + 416*K1*K2**3*K3 - 768*K1*K2**2*K3 - 128*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 6088*K1*K2*K3 + 672*K1*K3*K4 + 40*K1*K4*K5 - 1704*K2**4 - 752*K2**2*K3**2 - 48*K2**2*K4**2 + 1752*K2**2*K4 - 3284*K2**2 + 512*K2*K3*K5 + 32*K2*K4*K6 - 1852*K3**2 - 506*K4**2 - 68*K5**2 - 4*K6**2 + 3760
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact