Gauss code |
O1O2O3U1U4O5U2O6O4U6U3U5 |
R3 orbit |
{'O1O2O3U1U4O5U2O6O4U6U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U1U5O6O5U2O4U6U3 |
Gauss code of K* |
O1O2O3U4U5U2O4O6U3O5U1U6 |
Gauss code of -K* |
O1O2O3U4U3O5U1O4O6U2U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 1 1 -1],[ 2 0 1 2 1 2 0],[ 0 -1 0 0 0 1 -1],[-1 -2 0 0 0 0 -1],[-1 -1 0 0 0 0 -1],[-1 -2 -1 0 0 0 0],[ 1 0 1 1 1 0 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 0 0 0 -1 -1],[-1 0 0 0 0 -1 -2],[-1 0 0 0 -1 0 -2],[ 0 0 0 1 0 -1 -1],[ 1 1 1 0 1 0 0],[ 2 1 2 2 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,0,0,0,1,1,0,0,1,2,1,0,2,1,1,0] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,1,1,2,2,1,1,0,1,0,1,0,0,0,0] |
Phi of -K |
[-2,-1,0,1,1,1,1,1,1,1,2,0,1,2,1,1,0,1,0,0,0] |
Phi of K* |
[-1,-1,-1,0,1,2,0,0,0,2,1,0,1,1,1,1,1,2,0,1,1] |
Phi of -K* |
[-2,-1,0,1,1,1,0,1,1,2,2,1,1,0,1,0,1,0,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+24w^2z+29w |
Inner characteristic polynomial |
t^6+14t^4+21t^2+1 |
Outer characteristic polynomial |
t^7+22t^5+38t^3+6t |
Flat arrow polynomial |
4*K1**3 - 6*K1**2 - 8*K1*K2 + K1 + 3*K2 + 3*K3 + 4 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 480*K1**4*K2 - 944*K1**4 + 384*K1**3*K2*K3 - 352*K1**3*K3 - 192*K1**2*K2**4 + 544*K1**2*K2**3 - 5856*K1**2*K2**2 + 32*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 736*K1**2*K2*K4 + 7592*K1**2*K2 - 304*K1**2*K3**2 - 80*K1**2*K4**2 - 32*K1**2*K5**2 - 6092*K1**2 + 448*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 544*K1*K2**2*K5 - 224*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7904*K1*K2*K3 - 32*K1*K2*K4*K5 + 1272*K1*K3*K4 + 408*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 856*K2**4 - 32*K2**3*K6 - 336*K2**2*K3**2 - 64*K2**2*K4**2 + 1704*K2**2*K4 - 4682*K2**2 + 680*K2*K3*K5 + 56*K2*K4*K6 + 8*K3**2*K6 - 2464*K3**2 - 838*K4**2 - 292*K5**2 - 14*K6**2 + 4692 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |