Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1836

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,2,2,0,0,0,1,1,0,1,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1836']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+21t^5+29t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1836']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 832*K1**4*K2 - 2256*K1**4 + 224*K1**3*K2*K3 - 352*K1**3*K3 + 736*K1**2*K2**3 - 5552*K1**2*K2**2 - 832*K1**2*K2*K4 + 8408*K1**2*K2 - 112*K1**2*K3**2 - 5952*K1**2 + 160*K1*K2**3*K3 - 1184*K1*K2**2*K3 - 160*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7744*K1*K2*K3 + 1016*K1*K3*K4 + 48*K1*K4*K5 - 1192*K2**4 - 464*K2**2*K3**2 - 48*K2**2*K4**2 + 1928*K2**2*K4 - 4900*K2**2 + 392*K2*K3*K5 + 32*K2*K4*K6 - 2396*K3**2 - 738*K4**2 - 76*K5**2 - 4*K6**2 + 4920
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1836']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73330', 'vk6.73340', 'vk6.73492', 'vk6.73501', 'vk6.75253', 'vk6.75266', 'vk6.75502', 'vk6.75510', 'vk6.78214', 'vk6.78230', 'vk6.78453', 'vk6.78472', 'vk6.80041', 'vk6.80056', 'vk6.80190', 'vk6.80204', 'vk6.81936', 'vk6.81937', 'vk6.82194', 'vk6.82212', 'vk6.82661', 'vk6.82665', 'vk6.84723', 'vk6.84729', 'vk6.85027', 'vk6.85029', 'vk6.85752', 'vk6.86506', 'vk6.87327', 'vk6.87690', 'vk6.89625', 'vk6.90088']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U2O6O4U3U5U6
R3 orbit {'O1O2O3U1U4O5U2O6O4U3U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U1O6O4U2O5U6U3
Gauss code of K* O1O2O3U4U5U1O4O6U2O5U3U6
Gauss code of -K* O1O2O3U4U1O5U2O4O6U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 1 0 1],[ 2 0 1 2 1 2 1],[ 0 -1 0 0 0 1 1],[ 0 -2 0 0 0 0 1],[-1 -1 0 0 0 0 0],[ 0 -2 -1 0 0 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 0 0 0 0 -1],[-1 0 0 -1 -1 -1 -1],[ 0 0 1 0 1 0 -1],[ 0 0 1 -1 0 0 -2],[ 0 0 1 0 0 0 -2],[ 2 1 1 1 2 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,0,0,0,0,1,1,1,1,1,-1,0,1,0,2,2]
Phi over symmetry [-2,0,0,0,1,1,0,0,1,2,2,0,0,0,1,1,0,1,0,1,0]
Phi of -K [-2,0,0,0,1,1,0,0,1,2,2,0,0,0,1,1,0,1,0,1,0]
Phi of K* [-1,-1,0,0,0,2,0,0,0,0,2,1,1,1,2,-1,0,0,0,1,0]
Phi of -K* [-2,0,0,0,1,1,1,2,2,1,1,0,1,0,1,0,0,1,0,1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+15t^4+10t^2+1
Outer characteristic polynomial t^7+21t^5+29t^3+8t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -192*K1**4*K2**2 + 832*K1**4*K2 - 2256*K1**4 + 224*K1**3*K2*K3 - 352*K1**3*K3 + 736*K1**2*K2**3 - 5552*K1**2*K2**2 - 832*K1**2*K2*K4 + 8408*K1**2*K2 - 112*K1**2*K3**2 - 5952*K1**2 + 160*K1*K2**3*K3 - 1184*K1*K2**2*K3 - 160*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7744*K1*K2*K3 + 1016*K1*K3*K4 + 48*K1*K4*K5 - 1192*K2**4 - 464*K2**2*K3**2 - 48*K2**2*K4**2 + 1928*K2**2*K4 - 4900*K2**2 + 392*K2*K3*K5 + 32*K2*K4*K6 - 2396*K3**2 - 738*K4**2 - 76*K5**2 - 4*K6**2 + 4920
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact