Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1834

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,0,1,1,1,-1,-1,-1,1,0,0,0,1,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1834']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+33t^5+103t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1834']
2-strand cable arrow polynomial of the knot is: -64*K1**4 + 32*K1**3*K2*K3 - 192*K1**2*K2**4 + 512*K1**2*K2**3 - 4592*K1**2*K2**2 - 96*K1**2*K2*K4 + 3888*K1**2*K2 - 64*K1**2*K3**2 - 2936*K1**2 + 384*K1*K2**3*K3 - 320*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 4696*K1*K2*K3 + 248*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1048*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 816*K2**2*K4 - 1790*K2**2 + 72*K2*K3*K5 + 16*K2*K4*K6 - 1296*K3**2 - 234*K4**2 - 8*K5**2 - 2*K6**2 + 2256
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1834']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4729', 'vk6.5051', 'vk6.6259', 'vk6.6706', 'vk6.8226', 'vk6.8669', 'vk6.9611', 'vk6.9935', 'vk6.20654', 'vk6.22085', 'vk6.28144', 'vk6.29573', 'vk6.39582', 'vk6.41813', 'vk6.46201', 'vk6.47819', 'vk6.48769', 'vk6.48977', 'vk6.49575', 'vk6.49784', 'vk6.50779', 'vk6.50990', 'vk6.51263', 'vk6.51465', 'vk6.57578', 'vk6.58744', 'vk6.62252', 'vk6.63198', 'vk6.67048', 'vk6.67921', 'vk6.69677', 'vk6.70358']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U6O4O6U3U2U5
R3 orbit {'O1O2O3U1U4O5U6O4O6U3U2U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U2U1O5O6U5O4U6U3
Gauss code of K* O1O2O3U4U2U1O4O5U3O6U5U6
Gauss code of -K* O1O2O3U4U5O4U1O5O6U3U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 0 1 1],[ 2 0 2 1 2 2 2],[ 0 -2 0 0 -1 1 1],[ 0 -1 0 0 -1 0 1],[ 0 -2 1 1 0 2 0],[-1 -2 -1 0 -2 0 -1],[-1 -2 -1 -1 0 1 0]]
Primitive based matrix [[ 0 1 1 0 0 0 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 -2 0 -1 -2],[ 0 0 2 0 1 1 -2],[ 0 1 0 -1 0 0 -1],[ 0 1 1 -1 0 0 -2],[ 2 2 2 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,0,2,-1,0,1,1,2,2,0,1,2,-1,-1,2,0,1,2]
Phi over symmetry [-2,0,0,0,1,1,0,0,1,1,1,-1,-1,-1,1,0,0,0,1,0,1]
Phi of -K [-2,0,0,0,1,1,0,0,1,1,1,-1,-1,-1,1,0,0,0,1,0,1]
Phi of K* [-1,-1,0,0,0,2,-1,-1,0,1,1,1,0,0,1,1,1,0,0,0,1]
Phi of -K* [-2,0,0,0,1,1,1,2,2,2,2,-1,0,0,1,1,2,0,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial 5w^3z^2-8w^3z+26w^2z+17w
Inner characteristic polynomial t^6+27t^4+72t^2+1
Outer characteristic polynomial t^7+33t^5+103t^3+12t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -64*K1**4 + 32*K1**3*K2*K3 - 192*K1**2*K2**4 + 512*K1**2*K2**3 - 4592*K1**2*K2**2 - 96*K1**2*K2*K4 + 3888*K1**2*K2 - 64*K1**2*K3**2 - 2936*K1**2 + 384*K1*K2**3*K3 - 320*K1*K2**2*K3 - 32*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 4696*K1*K2*K3 + 248*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1048*K2**4 - 208*K2**2*K3**2 - 48*K2**2*K4**2 + 816*K2**2*K4 - 1790*K2**2 + 72*K2*K3*K5 + 16*K2*K4*K6 - 1296*K3**2 - 234*K4**2 - 8*K5**2 - 2*K6**2 + 2256
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]]
If K is slice False
Contact