Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1831

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,2,3,1,0,2,2,0,1,0,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1831']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+27t^5+56t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1831']
2-strand cable arrow polynomial of the knot is: -32*K1**4 + 64*K1**3*K2*K3 - 640*K1**2*K2**2 + 352*K1**2*K2 - 224*K1**2*K3**2 - 32*K1**2*K5**2 - 984*K1**2 + 192*K1*K2**3*K3 + 2048*K1*K2*K3 + 224*K1*K3*K4 + 96*K1*K4*K5 + 80*K1*K5*K6 - 144*K2**4 - 352*K2**2*K3**2 - 16*K2**2*K4**2 + 48*K2**2*K4 - 852*K2**2 + 352*K2*K3*K5 + 32*K2*K4*K6 - 960*K3**2 - 124*K4**2 - 184*K5**2 - 44*K6**2 + 1098
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1831']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71457', 'vk6.71494', 'vk6.71510', 'vk6.71551', 'vk6.71983', 'vk6.72040', 'vk6.72539', 'vk6.72648', 'vk6.72929', 'vk6.72966', 'vk6.73125', 'vk6.77078', 'vk6.77114', 'vk6.77128', 'vk6.77167', 'vk6.77464', 'vk6.81288', 'vk6.81438', 'vk6.81535', 'vk6.85485', 'vk6.86885', 'vk6.86912', 'vk6.87257', 'vk6.87725', 'vk6.89347', 'vk6.89504']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U3O4O6U5U2U6
R3 orbit {'O1O2O3U1U4O5U3O4O6U5U2U6', 'O1O2O3U1U4U2O5O4O6U3U5U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U2U5O4O6U1O5U6U3
Gauss code of K* O1O2O3U4U2U5O4O6U1O5U6U3
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 -1 2],[ 2 0 2 1 1 1 1],[ 0 -2 0 0 0 0 2],[-1 -1 0 0 -1 0 1],[ 0 -1 0 1 0 -1 1],[ 1 -1 0 0 1 0 1],[-2 -1 -2 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -1 -1],[-1 1 0 -1 0 0 -1],[ 0 1 1 0 0 -1 -1],[ 0 2 0 0 0 0 -2],[ 1 1 0 1 0 0 -1],[ 2 1 1 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,2,1,1,1,0,0,1,0,1,1,0,2,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,2,3,1,0,2,2,0,1,0,0,1,0]
Phi of -K [-2,-1,0,0,1,2,0,0,1,2,3,1,0,2,2,0,1,0,0,1,0]
Phi of K* [-2,-1,0,0,1,2,0,0,1,2,3,1,0,2,2,0,1,0,0,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,1,1,1,0,0,1,0,1,1,0,2,1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 6z+13
Enhanced Jones-Krushkal polynomial -6w^3z+12w^2z+13w
Inner characteristic polynomial t^6+17t^4+26t^2
Outer characteristic polynomial t^7+27t^5+56t^3
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -32*K1**4 + 64*K1**3*K2*K3 - 640*K1**2*K2**2 + 352*K1**2*K2 - 224*K1**2*K3**2 - 32*K1**2*K5**2 - 984*K1**2 + 192*K1*K2**3*K3 + 2048*K1*K2*K3 + 224*K1*K3*K4 + 96*K1*K4*K5 + 80*K1*K5*K6 - 144*K2**4 - 352*K2**2*K3**2 - 16*K2**2*K4**2 + 48*K2**2*K4 - 852*K2**2 + 352*K2*K3*K5 + 32*K2*K4*K6 - 960*K3**2 - 124*K4**2 - 184*K5**2 - 44*K6**2 + 1098
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}]]
If K is slice True
Contact