Gauss code |
O1O2O3U1U2O4U3O5O6U4U5U6 |
R3 orbit |
{'O1O2O3U1U2O4U3O5O6U4U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5U6O4O5U1O6U2U3 |
Gauss code of K* |
O1O2O3U4U5U6O4O5U1O6U2U3 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 -1 0 2],[ 2 0 1 2 1 0 0],[ 0 -1 0 1 1 0 0],[-1 -2 -1 0 1 1 1],[ 1 -1 -1 -1 0 1 2],[ 0 0 0 -1 -1 0 1],[-2 0 0 -1 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -2 0],[-1 1 0 -1 1 1 -2],[ 0 0 1 0 0 1 -1],[ 0 1 -1 0 0 -1 0],[ 1 2 -1 -1 1 0 -1],[ 2 0 2 1 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,0,1,2,0,1,-1,-1,2,0,-1,1,1,0,1] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,1,2,1,4,2,0,3,1,0,0,2,2,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,0,1,2,1,4,2,0,3,1,0,0,2,2,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,1,2,1,4,2,0,3,1,0,0,2,2,1,0] |
Phi of -K* |
[-2,-1,0,0,1,2,1,0,1,2,0,1,-1,-1,2,0,-1,1,1,0,1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+7w^3z^2-4w^3z+26w^2z+25w |
Inner characteristic polynomial |
t^6+17t^4+26t^2+1 |
Outer characteristic polynomial |
t^7+27t^5+136t^3+13t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 4*K1*K2 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 384*K1**4*K2 - 928*K1**4 + 128*K1**3*K2*K3 - 192*K1**3*K3 - 1792*K1**2*K2**4 + 4608*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 9216*K1**2*K2**2 - 320*K1**2*K2*K4 + 8080*K1**2*K2 - 32*K1**2*K3**2 - 5048*K1**2 + 2240*K1*K2**3*K3 - 2176*K1*K2**2*K3 - 320*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 6336*K1*K2*K3 + 288*K1*K3*K4 - 704*K2**6 + 448*K2**4*K4 - 3744*K2**4 - 736*K2**2*K3**2 - 48*K2**2*K4**2 + 2384*K2**2*K4 - 1568*K2**2 + 208*K2*K3*K5 - 1312*K3**2 - 272*K4**2 - 8*K5**2 + 3502 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}]] |
If K is slice |
True |