Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1813

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,1,2,2,1,1,0,1,1,0,2,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1813']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+28t^5+121t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1813']
2-strand cable arrow polynomial of the knot is: -192*K1**2*K2**4 + 1088*K1**2*K2**3 - 4944*K1**2*K2**2 - 576*K1**2*K2*K4 + 4520*K1**2*K2 - 3392*K1**2 + 448*K1*K2**3*K3 - 864*K1*K2**2*K3 - 416*K1*K2**2*K5 + 5128*K1*K2*K3 + 376*K1*K3*K4 + 128*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1752*K2**4 - 32*K2**3*K6 - 464*K2**2*K3**2 - 16*K2**2*K4**2 + 1792*K2**2*K4 - 2222*K2**2 + 640*K2*K3*K5 + 16*K2*K4*K6 - 1272*K3**2 - 410*K4**2 - 208*K5**2 - 2*K6**2 + 2592
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1813']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17003', 'vk6.17246', 'vk6.20524', 'vk6.21918', 'vk6.23410', 'vk6.23719', 'vk6.27975', 'vk6.29446', 'vk6.35479', 'vk6.35930', 'vk6.39381', 'vk6.41568', 'vk6.42912', 'vk6.43213', 'vk6.45956', 'vk6.47635', 'vk6.55184', 'vk6.55428', 'vk6.57389', 'vk6.58558', 'vk6.59563', 'vk6.59899', 'vk6.62049', 'vk6.63041', 'vk6.64982', 'vk6.65194', 'vk6.66938', 'vk6.67793', 'vk6.68270', 'vk6.68426', 'vk6.69547', 'vk6.70247']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O6O5U2U1O4U6U3
R3 orbit {'O1O2O3U4U5O6O5U2U1O4U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U3U2O6O4U6U5
Gauss code of K* O1O2U3O4O5U2U1U5O3O6U4U6
Gauss code of -K* O1O2U3O4O5U6U2O6O3U1U5U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 -1 1 0],[ 1 0 0 2 0 1 0],[ 1 0 0 1 1 1 -1],[-2 -2 -1 0 -1 -1 -2],[ 1 0 -1 1 0 2 1],[-1 -1 -1 1 -2 0 0],[ 0 0 1 2 -1 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -2 -1 -1 -2],[-1 1 0 0 -1 -2 -1],[ 0 2 0 0 1 -1 0],[ 1 1 1 -1 0 1 0],[ 1 1 2 1 -1 0 0],[ 1 2 1 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,2,1,1,2,0,1,2,1,-1,1,0,-1,0,0]
Phi over symmetry [-2,-1,0,1,1,1,0,0,1,2,2,1,1,0,1,1,0,2,0,0,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,0,2,1,2,0,0,0,2,1,1,1,1,0,0]
Phi of K* [-2,-1,0,1,1,1,0,0,1,2,2,1,1,0,1,1,0,2,0,0,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,1,2,1,0,-1,1,1,0,1,2,0,2,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-6w^3z+25w^2z+15w
Inner characteristic polynomial t^6+20t^4+76t^2+4
Outer characteristic polynomial t^7+28t^5+121t^3+11t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -192*K1**2*K2**4 + 1088*K1**2*K2**3 - 4944*K1**2*K2**2 - 576*K1**2*K2*K4 + 4520*K1**2*K2 - 3392*K1**2 + 448*K1*K2**3*K3 - 864*K1*K2**2*K3 - 416*K1*K2**2*K5 + 5128*K1*K2*K3 + 376*K1*K3*K4 + 128*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1752*K2**4 - 32*K2**3*K6 - 464*K2**2*K3**2 - 16*K2**2*K4**2 + 1792*K2**2*K4 - 2222*K2**2 + 640*K2*K3*K5 + 16*K2*K4*K6 - 1272*K3**2 - 410*K4**2 - 208*K5**2 - 2*K6**2 + 2592
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact