Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1799

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,0,0,0,1,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1799']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+20t^5+51t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1799']
2-strand cable arrow polynomial of the knot is: 512*K1**4*K2**3 - 768*K1**4*K2**2 + 480*K1**4*K2 - 688*K1**4 - 512*K1**3*K2**2*K3 + 896*K1**3*K2*K3 - 832*K1**3*K3 - 1280*K1**2*K2**4 + 2848*K1**2*K2**3 - 5248*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 4808*K1**2*K2 - 304*K1**2*K3**2 - 3452*K1**2 + 1440*K1*K2**3*K3 - 480*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 4240*K1*K2*K3 + 376*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 1336*K2**4 - 496*K2**2*K3**2 - 48*K2**2*K4**2 + 432*K2**2*K4 - 1198*K2**2 + 88*K2*K3*K5 + 16*K2*K4*K6 - 1048*K3**2 - 142*K4**2 - 4*K5**2 - 2*K6**2 + 2244
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1799']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19911', 'vk6.19964', 'vk6.21132', 'vk6.21224', 'vk6.26828', 'vk6.26965', 'vk6.28608', 'vk6.28703', 'vk6.38260', 'vk6.38377', 'vk6.40382', 'vk6.40541', 'vk6.45127', 'vk6.45249', 'vk6.46985', 'vk6.47054', 'vk6.56687', 'vk6.56766', 'vk6.57764', 'vk6.57883', 'vk6.61082', 'vk6.61240', 'vk6.62345', 'vk6.62449', 'vk6.66380', 'vk6.66472', 'vk6.67138', 'vk6.67257', 'vk6.69037', 'vk6.69122', 'vk6.69829', 'vk6.69890']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U3O5O6U1U2O4U6U5
R3 orbit {'O1O2O3U4U3O5O6U1U2O4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5O6U2U3O5O4U1U6
Gauss code of K* O1O2U3O4O5U1U2U6O3O6U5U4
Gauss code of -K* O1O2U3O4O5U2U1O6O3U6U4U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 -1 1 1],[ 2 0 1 0 0 2 1],[ 0 -1 0 0 -1 1 0],[-1 0 0 0 -1 -1 -1],[ 1 0 1 1 0 0 1],[-1 -2 -1 1 0 0 0],[-1 -1 0 1 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 -1 -1],[-1 -1 0 -1 0 -1 0],[-1 0 1 0 -1 0 -2],[ 0 0 0 1 0 -1 -1],[ 1 1 1 0 1 0 0],[ 2 1 0 2 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,0,1,1,1,0,1,0,1,0,2,1,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,0,0,0,1,-1,-1,0]
Phi of -K [-2,-1,0,1,1,1,1,1,1,2,3,0,2,1,1,0,1,1,0,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,1,1,3,0,0,2,1,1,1,2,0,1,1]
Phi of -K* [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,0,0,0,1,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+17z+19
Enhanced Jones-Krushkal polynomial -2w^4z^2+6w^3z^2-6w^3z+23w^2z+19w
Inner characteristic polynomial t^6+12t^4+26t^2+1
Outer characteristic polynomial t^7+20t^5+51t^3+8t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial 512*K1**4*K2**3 - 768*K1**4*K2**2 + 480*K1**4*K2 - 688*K1**4 - 512*K1**3*K2**2*K3 + 896*K1**3*K2*K3 - 832*K1**3*K3 - 1280*K1**2*K2**4 + 2848*K1**2*K2**3 - 5248*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 4808*K1**2*K2 - 304*K1**2*K3**2 - 3452*K1**2 + 1440*K1*K2**3*K3 - 480*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 4240*K1*K2*K3 + 376*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 1336*K2**4 - 496*K2**2*K3**2 - 48*K2**2*K4**2 + 432*K2**2*K4 - 1198*K2**2 + 88*K2*K3*K5 + 16*K2*K4*K6 - 1048*K3**2 - 142*K4**2 - 4*K5**2 - 2*K6**2 + 2244
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact