Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1792

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,1,3,-1,1,0,1,0,0,0,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1792']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+25t^5+37t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1792']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 64*K1**4*K2 - 1536*K1**4 + 224*K1**3*K2*K3 - 320*K1**3*K3 + 96*K1**2*K2**3 - 2816*K1**2*K2**2 - 352*K1**2*K2*K4 + 5480*K1**2*K2 - 320*K1**2*K3**2 - 3816*K1**2 - 192*K1*K2**2*K3 + 4376*K1*K2*K3 + 592*K1*K3*K4 - 96*K2**4 + 352*K2**2*K4 - 2960*K2**2 - 1416*K3**2 - 268*K4**2 + 2970
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1792']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71371', 'vk6.71432', 'vk6.71893', 'vk6.71954', 'vk6.72449', 'vk6.72612', 'vk6.72729', 'vk6.72810', 'vk6.72875', 'vk6.73040', 'vk6.74223', 'vk6.74368', 'vk6.74426', 'vk6.74852', 'vk6.75040', 'vk6.76615', 'vk6.76903', 'vk6.77036', 'vk6.77406', 'vk6.77749', 'vk6.77802', 'vk6.79269', 'vk6.79414', 'vk6.79743', 'vk6.79830', 'vk6.79883', 'vk6.80864', 'vk6.80912', 'vk6.81382', 'vk6.85523', 'vk6.87202', 'vk6.89267']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U2O5O6U1U5O4U6U3
R3 orbit {'O1O2O3U4U2O5O6U1U5O4U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U6U3O4O6U2U5
Gauss code of K* O1O2U3O4O5U1U6U5O3O6U2U4
Gauss code of -K* O1O2U3O4O5U2U4O6O3U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 2 -1 0 1],[ 2 0 0 3 0 1 1],[ 0 0 0 0 0 0 -1],[-2 -3 0 0 -1 -1 0],[ 1 0 0 1 0 0 0],[ 0 -1 0 1 0 0 1],[-1 -1 1 0 0 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 0 0 -1 -1 -3],[-1 0 0 1 -1 0 -1],[ 0 0 -1 0 0 0 0],[ 0 1 1 0 0 0 -1],[ 1 1 0 0 0 0 0],[ 2 3 1 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,0,0,1,1,3,-1,1,0,1,0,0,0,0,1,0]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,1,3,-1,1,0,1,0,0,0,0,1,0]
Phi of -K [-2,-1,0,0,1,2,1,1,2,2,1,1,1,2,2,0,0,1,2,2,1]
Phi of K* [-2,-1,0,0,1,2,1,1,2,2,1,0,2,2,2,0,1,1,1,2,1]
Phi of -K* [-2,-1,0,0,1,2,0,0,1,1,3,0,0,0,1,0,-1,0,1,1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+19z+31
Enhanced Jones-Krushkal polynomial 2w^3z^2+19w^2z+31w
Inner characteristic polynomial t^6+15t^4+19t^2+1
Outer characteristic polynomial t^7+25t^5+37t^3+5t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**4*K2**2 + 64*K1**4*K2 - 1536*K1**4 + 224*K1**3*K2*K3 - 320*K1**3*K3 + 96*K1**2*K2**3 - 2816*K1**2*K2**2 - 352*K1**2*K2*K4 + 5480*K1**2*K2 - 320*K1**2*K3**2 - 3816*K1**2 - 192*K1*K2**2*K3 + 4376*K1*K2*K3 + 592*K1*K3*K4 - 96*K2**4 + 352*K2**2*K4 - 2960*K2**2 - 1416*K3**2 - 268*K4**2 + 2970
Genus of based matrix 0
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}]]
If K is slice True
Contact