Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1791

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,1,1,0,0,1,0,1,0,0,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1791']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+16t^5+32t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1791']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 480*K1**4*K2 - 800*K1**4 + 384*K1**3*K2*K3 - 256*K1**3*K3 - 192*K1**2*K2**4 + 544*K1**2*K2**3 - 4320*K1**2*K2**2 - 352*K1**2*K2*K4 + 5504*K1**2*K2 - 160*K1**2*K3**2 - 3932*K1**2 + 352*K1*K2**3*K3 - 576*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4568*K1*K2*K3 + 416*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 536*K2**4 - 144*K2**2*K3**2 - 48*K2**2*K4**2 + 744*K2**2*K4 - 2734*K2**2 + 88*K2*K3*K5 + 16*K2*K4*K6 - 1212*K3**2 - 282*K4**2 - 24*K5**2 - 2*K6**2 + 2808
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1791']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11433', 'vk6.11729', 'vk6.12744', 'vk6.13088', 'vk6.20331', 'vk6.21672', 'vk6.27631', 'vk6.29175', 'vk6.31187', 'vk6.31528', 'vk6.32351', 'vk6.32769', 'vk6.39063', 'vk6.41321', 'vk6.45815', 'vk6.47486', 'vk6.52186', 'vk6.52444', 'vk6.53014', 'vk6.53330', 'vk6.57202', 'vk6.58417', 'vk6.61812', 'vk6.62937', 'vk6.63758', 'vk6.63869', 'vk6.64183', 'vk6.64370', 'vk6.66815', 'vk6.67683', 'vk6.69451', 'vk6.70173']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U1O5O6U5U2O4U6U3
R3 orbit {'O1O2O3U4U1O5O6U5U2O4U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U2U6O4O6U3U5
Gauss code of K* O1O2U3O4O5U6U2U5O3O6U1U4
Gauss code of -K* O1O2U3O4O5U2U5O6O3U1U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 -1 -1 1],[ 1 0 1 1 0 0 0],[ 0 -1 0 1 0 0 1],[-2 -1 -1 0 -1 -1 0],[ 1 0 0 1 0 -1 0],[ 1 0 0 1 1 0 1],[-1 0 -1 0 0 -1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -1 -1],[-1 0 0 -1 0 0 -1],[ 0 1 1 0 0 -1 0],[ 1 1 0 0 0 0 -1],[ 1 1 0 1 0 0 0],[ 1 1 1 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,1,1,1,1,1,0,0,1,0,1,0,0,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,1,1,0,0,1,0,1,0,0,1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,2,2,0,2,2,0,1,1]
Phi of K* [-2,-1,0,1,1,1,1,1,2,2,2,0,1,2,2,1,0,1,0,1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,0,1,0,0,1,1,1,0,1,1,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+8t^4+11t^2
Outer characteristic polynomial t^7+16t^5+32t^3+4t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -256*K1**4*K2**2 + 480*K1**4*K2 - 800*K1**4 + 384*K1**3*K2*K3 - 256*K1**3*K3 - 192*K1**2*K2**4 + 544*K1**2*K2**3 - 4320*K1**2*K2**2 - 352*K1**2*K2*K4 + 5504*K1**2*K2 - 160*K1**2*K3**2 - 3932*K1**2 + 352*K1*K2**3*K3 - 576*K1*K2**2*K3 - 64*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4568*K1*K2*K3 + 416*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 536*K2**4 - 144*K2**2*K3**2 - 48*K2**2*K4**2 + 744*K2**2*K4 - 2734*K2**2 + 88*K2*K3*K5 + 16*K2*K4*K6 - 1212*K3**2 - 282*K4**2 - 24*K5**2 - 2*K6**2 + 2808
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}]]
If K is slice False
Contact