Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1784

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,2,2,0,0,-1,0,-1,-1,0,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1784']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.241', '6.341', '6.542', '6.567', '6.699', '6.713', '6.771', '6.791', '6.1025', '6.1039', '6.1041', '6.1072', '6.1077', '6.1121', '6.1123', '6.1499', '6.1502', '6.1531', '6.1645', '6.1648', '6.1726', '6.1727', '6.1761', '6.1784', '6.1807', '6.1823', '6.1832', '6.1869', '6.1873', '6.1874']
Outer characteristic polynomial of the knot is: t^7+27t^5+68t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1784']
2-strand cable arrow polynomial of the knot is: -1088*K1**4*K2**2 + 2176*K1**4*K2 - 3680*K1**4 + 96*K1**3*K2*K3 - 320*K1**3*K3 - 256*K1**2*K2**4 + 2752*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 9376*K1**2*K2**2 - 512*K1**2*K2*K4 + 10856*K1**2*K2 - 160*K1**2*K3**2 - 64*K1**2*K4**2 - 5828*K1**2 + 384*K1*K2**3*K3 - 1376*K1*K2**2*K3 - 128*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 7368*K1*K2*K3 + 832*K1*K3*K4 + 112*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1480*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 1424*K2**2*K4 - 4174*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 1720*K3**2 - 546*K4**2 - 36*K5**2 - 2*K6**2 + 4776
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1784']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4754', 'vk6.5081', 'vk6.6300', 'vk6.6739', 'vk6.8261', 'vk6.8710', 'vk6.9643', 'vk6.9958', 'vk6.20397', 'vk6.21744', 'vk6.27731', 'vk6.29271', 'vk6.39175', 'vk6.41405', 'vk6.45903', 'vk6.47542', 'vk6.48794', 'vk6.49005', 'vk6.49618', 'vk6.49821', 'vk6.50818', 'vk6.51033', 'vk6.51293', 'vk6.51488', 'vk6.57258', 'vk6.58473', 'vk6.61898', 'vk6.63009', 'vk6.66875', 'vk6.67747', 'vk6.69499', 'vk6.70219']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O6O4U6U1O5U2U3
R3 orbit {'O1O2O3U4U5O6O4U6U1O5U2U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U2O4U3U5O6O5U4U6
Gauss code of K* O1O2U3O4O5U2U4U5O6O3U1U6
Gauss code of -K* O1O2U3O4O5U6U5O3O6U1U2U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 0 0 -1],[ 1 0 0 1 2 2 -1],[ 0 0 0 1 0 1 -1],[-2 -1 -1 0 -2 -1 -1],[ 0 -2 0 2 0 0 -1],[ 0 -2 -1 1 0 0 -1],[ 1 1 1 1 1 1 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 -1 -1 -2 -1 -1],[ 0 1 0 1 0 0 -1],[ 0 1 -1 0 0 -2 -1],[ 0 2 0 0 0 -2 -1],[ 1 1 0 2 2 0 -1],[ 1 1 1 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,1,1,2,1,1,-1,0,0,1,0,2,1,2,1,1]
Phi over symmetry [-2,0,0,0,1,1,0,1,1,2,2,0,0,-1,0,-1,-1,0,1,0,-1]
Phi of -K [-1,-1,0,0,0,2,-1,0,0,0,2,-1,-1,1,2,0,0,0,1,1,1]
Phi of K* [-2,0,0,0,1,1,0,1,1,2,2,0,0,-1,0,-1,-1,0,1,0,-1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,2,2,1,1,1,1,1,0,1,1,0,2,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+21t^4+39t^2+1
Outer characteristic polynomial t^7+27t^5+68t^3+8t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -1088*K1**4*K2**2 + 2176*K1**4*K2 - 3680*K1**4 + 96*K1**3*K2*K3 - 320*K1**3*K3 - 256*K1**2*K2**4 + 2752*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 9376*K1**2*K2**2 - 512*K1**2*K2*K4 + 10856*K1**2*K2 - 160*K1**2*K3**2 - 64*K1**2*K4**2 - 5828*K1**2 + 384*K1*K2**3*K3 - 1376*K1*K2**2*K3 - 128*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 7368*K1*K2*K3 + 832*K1*K3*K4 + 112*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1480*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 1424*K2**2*K4 - 4174*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 1720*K3**2 - 546*K4**2 - 36*K5**2 - 2*K6**2 + 4776
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact