Gauss code |
O1O2O3U4U3O5O4U1U5O6U2U6 |
R3 orbit |
{'O1O2O3U4U3O5O4U1U5O6U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O4U5U3O6O5U1U6 |
Gauss code of K* |
O1O2U3O4O3U1U4U5O6O5U2U6 |
Gauss code of -K* |
O1O2U1O3O4U5U3O6O5U6U2U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 0 0 1],[ 2 0 2 1 1 0 1],[ 0 -2 0 1 0 -1 1],[-1 -1 -1 0 -1 -1 0],[ 0 -1 0 1 0 0 1],[ 0 0 1 1 0 0 0],[-1 -1 -1 0 -1 0 0]] |
Primitive based matrix |
[[ 0 1 1 0 0 0 -2],[-1 0 0 0 -1 -1 -1],[-1 0 0 -1 -1 -1 -1],[ 0 0 1 0 1 0 0],[ 0 1 1 -1 0 0 -2],[ 0 1 1 0 0 0 -1],[ 2 1 1 0 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,0,0,0,2,0,0,1,1,1,1,1,1,1,-1,0,0,0,2,1] |
Phi over symmetry |
[-2,0,0,0,1,1,0,1,2,1,1,0,1,0,1,0,1,1,1,1,0] |
Phi of -K |
[-2,0,0,0,1,1,0,1,2,2,2,0,1,0,0,0,0,0,0,1,0] |
Phi of K* |
[-1,-1,0,0,0,2,0,0,0,0,2,0,0,1,2,0,-1,0,0,1,2] |
Phi of -K* |
[-2,0,0,0,1,1,0,1,2,1,1,0,1,0,1,0,1,1,1,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
21z+43 |
Enhanced Jones-Krushkal polynomial |
21w^2z+43w |
Inner characteristic polynomial |
t^6+13t^4+11t^2+1 |
Outer characteristic polynomial |
t^7+19t^5+24t^3+4t |
Flat arrow polynomial |
-14*K1**2 - 4*K1*K2 + 2*K1 + 7*K2 + 2*K3 + 8 |
2-strand cable arrow polynomial |
-384*K1**6 - 320*K1**4*K2**2 + 1664*K1**4*K2 - 7008*K1**4 + 960*K1**3*K2*K3 + 64*K1**3*K3*K4 - 832*K1**3*K3 + 128*K1**2*K2**2*K4 - 5792*K1**2*K2**2 - 672*K1**2*K2*K4 + 12312*K1**2*K2 - 1248*K1**2*K3**2 - 240*K1**2*K4**2 - 5352*K1**2 - 704*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 8208*K1*K2*K3 + 1992*K1*K3*K4 + 232*K1*K4*K5 - 216*K2**4 - 160*K2**2*K3**2 - 48*K2**2*K4**2 + 904*K2**2*K4 - 5644*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 2732*K3**2 - 826*K4**2 - 76*K5**2 - 4*K6**2 + 5800 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |