Min(phi) over symmetries of the knot is: [-2,0,1,1,1,1,2,0,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['4.6', '6.1770', '6.1951', '7.43053', '7.44462'] |
Arrow polynomial of the knot is: 8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.543', '6.1656', '6.1696', '6.1770', '6.1772', '6.1794'] |
Outer characteristic polynomial of the knot is: t^5+13t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1770', '6.1951', '7.38625', '7.43063'] |
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 1440*K1**4*K2 - 4416*K1**4 + 832*K1**3*K2*K3 - 1984*K1**3*K3 + 736*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 7408*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 896*K1**2*K2*K4 + 13456*K1**2*K2 - 1248*K1**2*K3**2 - 64*K1**2*K3*K5 - 8612*K1**2 + 480*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 416*K1*K2**2*K5 - 480*K1*K2*K3*K4 + 11448*K1*K2*K3 + 1760*K1*K3*K4 + 160*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 1256*K2**4 - 64*K2**3*K6 - 544*K2**2*K3**2 - 128*K2**2*K4**2 + 2024*K2**2*K4 - 6884*K2**2 + 728*K2*K3*K5 + 80*K2*K4*K6 - 3492*K3**2 - 818*K4**2 - 168*K5**2 - 12*K6**2 + 6928 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1770'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17093', 'vk6.17336', 'vk6.20581', 'vk6.21989', 'vk6.23478', 'vk6.23817', 'vk6.28046', 'vk6.29504', 'vk6.35631', 'vk6.36074', 'vk6.39460', 'vk6.41659', 'vk6.42997', 'vk6.43309', 'vk6.46048', 'vk6.47714', 'vk6.55244', 'vk6.55496', 'vk6.57466', 'vk6.58629', 'vk6.59644', 'vk6.59992', 'vk6.62141', 'vk6.63102', 'vk6.65048', 'vk6.65245', 'vk6.66997', 'vk6.67861', 'vk6.68311', 'vk6.68461', 'vk6.69615', 'vk6.70307'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4U2O5O4U1U3O6U5U6 |
R3 orbit | {'O1O2O3U4U2O5O4U1U3O6U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5O4U1U3O6O5U2U6 |
Gauss code of K* | O1O2U3O4O3U1U5U2O6O5U4U6 |
Gauss code of -K* | O1O2U1O3O4U5U2O6O5U3U6U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 1 0 0 1],[ 2 0 1 2 1 1 1],[ 0 -1 0 0 0 0 0],[-1 -2 0 0 -1 0 1],[ 0 -1 0 1 0 0 0],[ 0 -1 0 0 0 0 1],[-1 -1 0 -1 0 -1 0]] |
Primitive based matrix | [[ 0 1 1 0 -2],[-1 0 1 0 -2],[-1 -1 0 0 -1],[ 0 0 0 0 -1],[ 2 2 1 1 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-1,-1,0,2,-1,0,2,0,1,1] |
Phi over symmetry | [-2,0,1,1,1,1,2,0,0,-1] |
Phi of -K | [-2,0,1,1,1,1,2,1,1,-1] |
Phi of K* | [-1,-1,0,2,-1,1,2,1,1,1] |
Phi of -K* | [-2,0,1,1,1,1,2,0,0,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial | 2w^3z^2+23w^2z+39w |
Inner characteristic polynomial | t^4+7t^2+1 |
Outer characteristic polynomial | t^5+13t^3+4t |
Flat arrow polynomial | 8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial | -128*K1**4*K2**2 + 1440*K1**4*K2 - 4416*K1**4 + 832*K1**3*K2*K3 - 1984*K1**3*K3 + 736*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 7408*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 896*K1**2*K2*K4 + 13456*K1**2*K2 - 1248*K1**2*K3**2 - 64*K1**2*K3*K5 - 8612*K1**2 + 480*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 416*K1*K2**2*K5 - 480*K1*K2*K3*K4 + 11448*K1*K2*K3 + 1760*K1*K3*K4 + 160*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 1256*K2**4 - 64*K2**3*K6 - 544*K2**2*K3**2 - 128*K2**2*K4**2 + 2024*K2**2*K4 - 6884*K2**2 + 728*K2*K3*K5 + 80*K2*K4*K6 - 3492*K3**2 - 818*K4**2 - 168*K5**2 - 12*K6**2 + 6928 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {4, 5}, {2, 3}, {1}]] |
If K is slice | False |