Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,1,1,3,0,0,-1,0,-1,0,1,1,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1768'] |
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962'] |
Outer characteristic polynomial of the knot is: t^7+23t^5+58t^3+23t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1768'] |
2-strand cable arrow polynomial of the knot is: -512*K1**4*K2**2 + 864*K1**4*K2 - 3520*K1**4 + 576*K1**3*K2*K3 - 448*K1**3*K3 + 704*K1**2*K2**3 - 6800*K1**2*K2**2 - 576*K1**2*K2*K4 + 9912*K1**2*K2 - 192*K1**2*K3**2 - 4932*K1**2 - 448*K1*K2**2*K3 + 6456*K1*K2*K3 + 416*K1*K3*K4 - 456*K2**4 + 680*K2**2*K4 - 4048*K2**2 - 1500*K3**2 - 258*K4**2 + 4080 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1768'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3617', 'vk6.3692', 'vk6.3885', 'vk6.4002', 'vk6.7039', 'vk6.7080', 'vk6.7257', 'vk6.7372', 'vk6.17694', 'vk6.17743', 'vk6.24241', 'vk6.24302', 'vk6.36536', 'vk6.36613', 'vk6.43642', 'vk6.43749', 'vk6.48253', 'vk6.48332', 'vk6.48417', 'vk6.48434', 'vk6.50009', 'vk6.50050', 'vk6.50135', 'vk6.50154', 'vk6.55726', 'vk6.55783', 'vk6.60298', 'vk6.60381', 'vk6.65434', 'vk6.65463', 'vk6.68562', 'vk6.68591'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4U1O5O4U6U5O6U2U3 |
R3 orbit | {'O1O2O3U4U1O5O4U6U5O6U2U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U1U2O4U5U4O6O5U3U6 |
Gauss code of K* | O1O2U1O3O4U5U3U4O6O5U2U6 |
Gauss code of -K* | O1O2U3O4O3U5U4O6O5U1U2U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 2 0 0 -1],[ 1 0 0 1 1 -1 1],[ 0 0 0 1 1 0 -1],[-2 -1 -1 0 -1 0 -3],[ 0 -1 -1 1 0 0 0],[ 0 1 0 0 0 0 0],[ 1 -1 1 3 0 0 0]] |
Primitive based matrix | [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -1 -1 -3],[ 0 0 0 0 0 1 0],[ 0 1 0 0 1 0 -1],[ 0 1 0 -1 0 -1 0],[ 1 1 -1 0 1 0 1],[ 1 3 0 1 0 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,0,0,0,1,1,0,1,1,1,3,0,0,-1,0,-1,0,1,1,0,-1] |
Phi over symmetry | [-2,0,0,0,1,1,0,1,1,1,3,0,0,-1,0,-1,0,1,1,0,-1] |
Phi of -K | [-1,-1,0,0,0,2,-1,0,1,2,2,1,0,1,0,1,0,1,0,1,2] |
Phi of K* | [-2,0,0,0,1,1,1,1,2,0,2,-1,0,1,0,0,0,1,1,2,-1] |
Phi of -K* | [-1,-1,0,0,0,2,-1,0,0,1,3,-1,1,0,1,0,0,0,-1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^2+2t |
Normalized Jones-Krushkal polynomial | 5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+26w^2z+33w |
Inner characteristic polynomial | t^6+17t^4+41t^2+16 |
Outer characteristic polynomial | t^7+23t^5+58t^3+23t |
Flat arrow polynomial | -10*K1**2 + 5*K2 + 6 |
2-strand cable arrow polynomial | -512*K1**4*K2**2 + 864*K1**4*K2 - 3520*K1**4 + 576*K1**3*K2*K3 - 448*K1**3*K3 + 704*K1**2*K2**3 - 6800*K1**2*K2**2 - 576*K1**2*K2*K4 + 9912*K1**2*K2 - 192*K1**2*K3**2 - 4932*K1**2 - 448*K1*K2**2*K3 + 6456*K1*K2*K3 + 416*K1*K3*K4 - 456*K2**4 + 680*K2**2*K4 - 4048*K2**2 - 1500*K3**2 - 258*K4**2 + 4080 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {1, 5}, {2, 4}, {3}]] |
If K is slice | False |