Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1766

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,1,1,1,1,2,-1,0,0,0,0,0,0,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1766']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 + 5*K2 + 3*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.374', '6.446', '6.527', '6.1218', '6.1237', '6.1276', '6.1498', '6.1523', '6.1595', '6.1703', '6.1751', '6.1766', '6.1849', '6.1926']
Outer characteristic polynomial of the knot is: t^7+17t^5+26t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1766', '6.1806']
2-strand cable arrow polynomial of the knot is: -320*K1**6 - 192*K1**4*K2**2 + 2528*K1**4*K2 - 5552*K1**4 + 416*K1**3*K2*K3 - 1856*K1**3*K3 + 1280*K1**2*K2**3 + 288*K1**2*K2**2*K4 - 7280*K1**2*K2**2 - 672*K1**2*K2*K4 + 12880*K1**2*K2 - 624*K1**2*K3**2 - 128*K1**2*K4**2 - 6416*K1**2 + 256*K1*K2**3*K3 - 1824*K1*K2**2*K3 - 224*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 8632*K1*K2*K3 + 1320*K1*K3*K4 + 160*K1*K4*K5 - 32*K2**6 + 224*K2**4*K4 - 1352*K2**4 - 96*K2**3*K6 - 320*K2**2*K3**2 - 128*K2**2*K4**2 + 1920*K2**2*K4 - 5450*K2**2 + 360*K2*K3*K5 + 72*K2*K4*K6 - 2312*K3**2 - 686*K4**2 - 80*K5**2 - 6*K6**2 + 5532
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1766']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16553', 'vk6.16646', 'vk6.18142', 'vk6.18478', 'vk6.22952', 'vk6.23073', 'vk6.24597', 'vk6.25010', 'vk6.34953', 'vk6.35074', 'vk6.36740', 'vk6.37159', 'vk6.42522', 'vk6.42633', 'vk6.44008', 'vk6.44320', 'vk6.54800', 'vk6.54884', 'vk6.55956', 'vk6.56256', 'vk6.59228', 'vk6.59307', 'vk6.60490', 'vk6.60856', 'vk6.64782', 'vk6.64847', 'vk6.65621', 'vk6.65928', 'vk6.68080', 'vk6.68145', 'vk6.68692', 'vk6.68903']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U1O5O4U6U2O6U5U3
R3 orbit {'O1O2O3U4U1O5O4U6U2O6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4O5U2U5O6O4U3U6
Gauss code of K* O1O2U1O3O4U5U2U4O6O5U3U6
Gauss code of -K* O1O2U3O4O3U5U2O6O5U1U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 0 0 -1],[ 1 0 0 1 1 0 0],[ 0 0 0 1 0 -1 0],[-2 -1 -1 0 -1 -1 -2],[ 0 -1 0 1 0 0 -1],[ 0 0 1 1 0 0 0],[ 1 0 0 2 1 0 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 -1 -1 -1 -1 -2],[ 0 1 0 1 0 0 0],[ 0 1 -1 0 0 0 0],[ 0 1 0 0 0 -1 -1],[ 1 1 0 0 1 0 0],[ 1 2 0 0 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,1,1,1,1,2,-1,0,0,0,0,0,0,1,1,0]
Phi over symmetry [-2,0,0,0,1,1,1,1,1,1,2,-1,0,0,0,0,0,0,1,1,0]
Phi of -K [-1,-1,0,0,0,2,0,0,1,1,1,0,1,1,2,0,0,1,-1,1,1]
Phi of K* [-2,0,0,0,1,1,1,1,1,1,2,-1,0,1,1,0,1,1,0,0,0]
Phi of -K* [-1,-1,0,0,0,2,0,0,0,1,1,0,0,1,2,-1,0,1,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+11t^4+13t^2+1
Outer characteristic polynomial t^7+17t^5+26t^3+4t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 + 5*K2 + 3*K3 + 6
2-strand cable arrow polynomial -320*K1**6 - 192*K1**4*K2**2 + 2528*K1**4*K2 - 5552*K1**4 + 416*K1**3*K2*K3 - 1856*K1**3*K3 + 1280*K1**2*K2**3 + 288*K1**2*K2**2*K4 - 7280*K1**2*K2**2 - 672*K1**2*K2*K4 + 12880*K1**2*K2 - 624*K1**2*K3**2 - 128*K1**2*K4**2 - 6416*K1**2 + 256*K1*K2**3*K3 - 1824*K1*K2**2*K3 - 224*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 8632*K1*K2*K3 + 1320*K1*K3*K4 + 160*K1*K4*K5 - 32*K2**6 + 224*K2**4*K4 - 1352*K2**4 - 96*K2**3*K6 - 320*K2**2*K3**2 - 128*K2**2*K4**2 + 1920*K2**2*K4 - 5450*K2**2 + 360*K2*K3*K5 + 72*K2*K4*K6 - 2312*K3**2 - 686*K4**2 - 80*K5**2 - 6*K6**2 + 5532
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}]]
If K is slice False
Contact