Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1760

Min(phi) over symmetries of the knot is: [-2,0,1,1,1,0,2,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1746', '6.1760', '7.43063']
Arrow polynomial of the knot is: -10*K1**2 - 8*K1*K2 + 4*K1 + 5*K2 + 4*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.372', '6.930', '6.1007', '6.1701', '6.1714', '6.1760', '6.1788']
Outer characteristic polynomial of the knot is: t^5+19t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1746', '6.1760', '7.37934']
2-strand cable arrow polynomial of the knot is: -640*K1**6 - 320*K1**4*K2**2 + 1184*K1**4*K2 - 2832*K1**4 + 352*K1**3*K2*K3 - 2272*K1**2*K2**2 + 3992*K1**2*K2 - 1136*K1**2*K3**2 - 416*K1**2*K4**2 - 1384*K1**2 + 3000*K1*K2*K3 + 1336*K1*K3*K4 + 400*K1*K4*K5 - 296*K2**4 - 320*K2**2*K3**2 - 128*K2**2*K4**2 + 392*K2**2*K4 - 1808*K2**2 + 336*K2*K3*K5 + 128*K2*K4*K6 - 1096*K3**2 - 522*K4**2 - 184*K5**2 - 32*K6**2 + 2264
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1760']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4448', 'vk6.4543', 'vk6.5834', 'vk6.5961', 'vk6.7892', 'vk6.8006', 'vk6.9321', 'vk6.9440', 'vk6.13406', 'vk6.13503', 'vk6.13694', 'vk6.14064', 'vk6.15037', 'vk6.15157', 'vk6.17789', 'vk6.17820', 'vk6.18841', 'vk6.19434', 'vk6.19729', 'vk6.24336', 'vk6.25436', 'vk6.25467', 'vk6.26608', 'vk6.33260', 'vk6.33321', 'vk6.37560', 'vk6.44883', 'vk6.48635', 'vk6.50539', 'vk6.53644', 'vk6.55820', 'vk6.65492']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O4O6U2U6O5U1U3
R3 orbit {'O1O2O3U4U5O4O6U2U6O5U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U3O4U5U2O5O6U4U6
Gauss code of K* O1O2U3O4O5U4U1U5O6O3U6U2
Gauss code of -K* O1O2U3O4O5U4U6O3O6U1U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 -1 0 1],[ 1 0 0 2 0 1 1],[ 1 0 0 1 1 1 1],[-2 -2 -1 0 -3 -1 0],[ 1 0 -1 3 0 0 1],[ 0 -1 -1 1 0 0 1],[-1 -1 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 2 0 -1 -1],[-2 0 -1 -1 -3],[ 0 1 0 -1 0],[ 1 1 1 0 1],[ 1 3 0 -1 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,0,1,1,1,1,3,1,0,-1]
Phi over symmetry [-2,0,1,1,1,0,2,1,0,-1]
Phi of -K [-1,-1,0,2,-1,0,2,1,0,1]
Phi of K* [-2,0,1,1,1,0,2,1,0,-1]
Phi of -K* [-1,-1,0,2,-1,0,3,1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 15z+31
Enhanced Jones-Krushkal polynomial 15w^2z+31w
Inner characteristic polynomial t^4+13t^2+4
Outer characteristic polynomial t^5+19t^3+7t
Flat arrow polynomial -10*K1**2 - 8*K1*K2 + 4*K1 + 5*K2 + 4*K3 + 6
2-strand cable arrow polynomial -640*K1**6 - 320*K1**4*K2**2 + 1184*K1**4*K2 - 2832*K1**4 + 352*K1**3*K2*K3 - 2272*K1**2*K2**2 + 3992*K1**2*K2 - 1136*K1**2*K3**2 - 416*K1**2*K4**2 - 1384*K1**2 + 3000*K1*K2*K3 + 1336*K1*K3*K4 + 400*K1*K4*K5 - 296*K2**4 - 320*K2**2*K3**2 - 128*K2**2*K4**2 + 392*K2**2*K4 - 1808*K2**2 + 336*K2*K3*K5 + 128*K2*K4*K6 - 1096*K3**2 - 522*K4**2 - 184*K5**2 - 32*K6**2 + 2264
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact