Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1734

Min(phi) over symmetries of the knot is: [-2,-1,1,1,1,0,0,1,2,1,0,1,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['5.82', '6.1734', '7.13522', '7.32803']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^6+30t^4+36t^2+1
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1734', '7.9995', '7.15891']
2-strand cable arrow polynomial of the knot is: 4608*K1**4*K2 - 9952*K1**4 + 2304*K1**3*K2*K3 - 1088*K1**3*K3 - 384*K1**2*K2**4 + 768*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 9488*K1**2*K2**2 - 800*K1**2*K2*K4 + 8936*K1**2*K2 - 1632*K1**2*K3**2 - 96*K1**2*K4**2 + 1872*K1**2 + 512*K1*K2**3*K3 - 1408*K1*K2**2*K3 - 256*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5472*K1*K2*K3 + 1112*K1*K3*K4 + 72*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 696*K2**4 - 32*K2**3*K6 - 304*K2**2*K3**2 - 16*K2**2*K4**2 + 680*K2**2*K4 - 1478*K2**2 + 168*K2*K3*K5 + 16*K2*K4*K6 - 684*K3**2 - 154*K4**2 - 20*K5**2 - 2*K6**2 + 1648
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1734']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3214', 'vk6.3224', 'vk6.3229', 'vk6.3234', 'vk6.3241', 'vk6.3321', 'vk6.3332', 'vk6.3336', 'vk6.3345', 'vk6.3350', 'vk6.3357', 'vk6.3446', 'vk6.3448', 'vk6.3503', 'vk6.15213', 'vk6.15222', 'vk6.15223', 'vk6.15236', 'vk6.15246', 'vk6.15255', 'vk6.33871', 'vk6.33887', 'vk6.33893', 'vk6.33894', 'vk6.33896', 'vk6.34331', 'vk6.34334', 'vk6.48089', 'vk6.48095', 'vk6.48154', 'vk6.48162', 'vk6.54441']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U4O5O4U6U5O6U1U3
R3 orbit {'O1O2O3U2U4O5O4U6U5O6U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U3O4U5U4O6O5U6U2
Gauss code of K* O1O2U1O3O4U3U5U4O5O6U2U6
Gauss code of -K* O1O2U3O4O3U5U4O5O6U1U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 1 0 -1],[ 1 0 0 2 2 0 0],[ 1 0 0 1 1 0 1],[-2 -2 -1 0 -1 0 -3],[-1 -2 -1 1 0 0 -1],[ 0 0 0 0 0 0 0],[ 1 0 -1 3 1 0 0]]
Primitive based matrix [[ 0 2 1 -1 -1 -1],[-2 0 -1 -1 -2 -3],[-1 1 0 -1 -2 -1],[ 1 1 1 0 0 1],[ 1 2 2 0 0 0],[ 1 3 1 -1 0 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,-1,1,1,1,1,1,2,3,1,2,1,0,-1,0]
Phi over symmetry [-2,-1,1,1,1,0,0,1,2,1,0,1,0,-1,0]
Phi of -K [-1,-1,-1,1,2,-1,0,1,2,0,1,0,0,1,0]
Phi of K* [-2,-1,1,1,1,0,0,1,2,1,0,1,0,-1,0]
Phi of -K* [-1,-1,-1,1,2,-1,0,1,3,0,1,1,2,2,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 9z^2+30z+25
Enhanced Jones-Krushkal polynomial 9w^3z^2+30w^2z+25w
Inner characteristic polynomial t^5+22t^3+25t
Outer characteristic polynomial t^6+30t^4+36t^2+1
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial 4608*K1**4*K2 - 9952*K1**4 + 2304*K1**3*K2*K3 - 1088*K1**3*K3 - 384*K1**2*K2**4 + 768*K1**2*K2**3 + 384*K1**2*K2**2*K4 - 9488*K1**2*K2**2 - 800*K1**2*K2*K4 + 8936*K1**2*K2 - 1632*K1**2*K3**2 - 96*K1**2*K4**2 + 1872*K1**2 + 512*K1*K2**3*K3 - 1408*K1*K2**2*K3 - 256*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5472*K1*K2*K3 + 1112*K1*K3*K4 + 72*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 696*K2**4 - 32*K2**3*K6 - 304*K2**2*K3**2 - 16*K2**2*K4**2 + 680*K2**2*K4 - 1478*K2**2 + 168*K2*K3*K5 + 16*K2*K4*K6 - 684*K3**2 - 154*K4**2 - 20*K5**2 - 2*K6**2 + 1648
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {5}, {2, 4}, {3}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {5}, {2, 4}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {1, 3}]]
If K is slice False
Contact