Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1725

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,2,1,2,2,2,0,0,1,1,1,1,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1725']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+30t^5+27t^3+3t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1725']
2-strand cable arrow polynomial of the knot is: 224*K1**4*K2 - 4192*K1**4 - 32*K1**3*K3 - 2000*K1**2*K2**2 + 6264*K1**2*K2 - 1588*K1**2 + 1688*K1*K2*K3 - 72*K2**4 + 72*K2**2*K4 - 2016*K2**2 - 364*K3**2 - 18*K4**2 + 2032
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1725']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4873', 'vk6.5218', 'vk6.6459', 'vk6.6880', 'vk6.8420', 'vk6.8841', 'vk6.9768', 'vk6.10061', 'vk6.11684', 'vk6.12037', 'vk6.13026', 'vk6.20489', 'vk6.20756', 'vk6.21844', 'vk6.27887', 'vk6.29395', 'vk6.29723', 'vk6.32677', 'vk6.33020', 'vk6.39330', 'vk6.39796', 'vk6.46360', 'vk6.47598', 'vk6.47935', 'vk6.48839', 'vk6.49110', 'vk6.51358', 'vk6.51571', 'vk6.53279', 'vk6.57358', 'vk6.64348', 'vk6.66915']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U1O4O5U6U4O6U3U5
R3 orbit {'O1O2O3U2U1O4O5U6U4O6U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O5U6U5O4O6U3U2
Gauss code of K* O1O2U1O3O4U5U6U3O6O5U2U4
Gauss code of -K* O1O2U3O4O3U1U4O5O6U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 2 -1],[ 1 0 0 2 0 1 1],[ 1 0 0 1 0 1 1],[-1 -2 -1 0 1 2 -2],[ 0 0 0 -1 0 0 0],[-2 -1 -1 -2 0 0 -2],[ 1 -1 -1 2 0 2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -2 0 -1 -1 -2],[-1 2 0 1 -1 -2 -2],[ 0 0 -1 0 0 0 0],[ 1 1 1 0 0 0 1],[ 1 1 2 0 0 0 1],[ 1 2 2 0 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,2,0,1,1,2,-1,1,2,2,0,0,0,0,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,2,1,2,2,2,0,0,1,1,1,1,-1,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,1,0,2,1,1,0,1,1,1,2,2,2,-1]
Phi of K* [-2,-1,0,1,1,1,-1,2,1,2,2,2,0,0,1,1,1,1,-1,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,0,2,2,0,0,1,1,0,2,1,-1,0,2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+22t^4+14t^2
Outer characteristic polynomial t^7+30t^5+27t^3+3t
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial 224*K1**4*K2 - 4192*K1**4 - 32*K1**3*K3 - 2000*K1**2*K2**2 + 6264*K1**2*K2 - 1588*K1**2 + 1688*K1*K2*K3 - 72*K2**4 + 72*K2**2*K4 - 2016*K2**2 - 364*K3**2 - 18*K4**2 + 2032
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {5}, {1, 4}, {2}]]
If K is slice False
Contact