Gauss code |
O1O2O3O4O5U1O6U5U2U4U6U3 |
R3 orbit |
{'O1O2O3O4O5U1O6U5U2U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U6U2U4U1O6U5 |
Gauss code of K* |
O1O2O3O4O5U6U2U5U3U1O6U4 |
Gauss code of -K* |
O1O2O3O4O5U2O6U5U3U1U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 2 1 0 3],[ 4 0 2 4 3 1 3],[ 2 -2 0 3 1 0 3],[-2 -4 -3 0 -1 -1 2],[-1 -3 -1 1 0 0 2],[ 0 -1 0 1 0 0 1],[-3 -3 -3 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 1 0 -2 -4],[-3 0 -2 -2 -1 -3 -3],[-2 2 0 -1 -1 -3 -4],[-1 2 1 0 0 -1 -3],[ 0 1 1 0 0 0 -1],[ 2 3 3 1 0 0 -2],[ 4 3 4 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,0,2,4,2,2,1,3,3,1,1,3,4,0,1,3,0,1,2] |
Phi over symmetry |
[-4,-2,0,1,2,3,0,3,2,2,4,2,2,1,2,1,1,2,0,0,-1] |
Phi of -K |
[-4,-2,0,1,2,3,0,3,2,2,4,2,2,1,2,1,1,2,0,0,-1] |
Phi of K* |
[-3,-2,-1,0,2,4,-1,0,2,2,4,0,1,1,2,1,2,2,2,3,0] |
Phi of -K* |
[-4,-2,0,1,2,3,2,1,3,4,3,0,1,3,3,0,1,1,1,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2-4w^3z+23w^2z+31w |
Inner characteristic polynomial |
t^6+69t^4+28t^2 |
Outer characteristic polynomial |
t^7+103t^5+104t^3+8t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 2*K1*K2 - 2*K1*K3 - 2*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
-976*K1**4 - 256*K1**3*K3 - 128*K1**2*K2**4 + 1280*K1**2*K2**3 - 3696*K1**2*K2**2 - 384*K1**2*K2*K4 + 6200*K1**2*K2 - 208*K1**2*K3**2 - 5584*K1**2 + 928*K1*K2**3*K3 - 1152*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 6016*K1*K2*K3 + 984*K1*K3*K4 + 16*K1*K4*K5 + 8*K1*K5*K6 - 32*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 288*K2**4*K4 - 1512*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1200*K2**2*K3**2 - 264*K2**2*K4**2 + 1360*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 3660*K2**2 + 752*K2*K3*K5 + 128*K2*K4*K6 + 16*K3**2*K6 - 2316*K3**2 - 640*K4**2 - 172*K5**2 - 36*K6**2 + 4406 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |