Gauss code |
O1O2O3U1U4O5O6U5U3O4U2U6 |
R3 orbit |
{'O1O2O3U1U4O5O6U5U3O4U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U2O5U1U6O4O6U5U3 |
Gauss code of K* |
O1O2U3O4O5U6U4U2O6O3U1U5 |
Gauss code of -K* |
O1O2U3O4O5U1U5O3O6U4U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 0 -1 2],[ 2 0 2 1 1 0 2],[ 0 -2 0 1 -1 0 2],[-1 -1 -1 0 -1 0 1],[ 0 -1 1 1 0 -1 1],[ 1 0 0 0 1 0 1],[-2 -2 -2 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -1 -2],[-1 1 0 -1 -1 0 -1],[ 0 1 1 0 1 -1 -1],[ 0 2 1 -1 0 0 -2],[ 1 1 0 1 0 0 0],[ 2 2 1 1 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,2,1,2,1,1,0,1,-1,1,1,0,2,0] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,0,1,2,2,0,0,2,2,-1,1,0,0,1,1] |
Phi of -K |
[-2,-1,0,0,1,2,1,0,1,2,2,1,0,2,2,1,0,0,0,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,0,1,2,2,0,0,2,2,-1,1,0,0,1,1] |
Phi of -K* |
[-2,-1,0,0,1,2,0,1,2,1,2,1,0,0,1,1,1,1,1,2,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
Inner characteristic polynomial |
t^6+21t^4+38t^2+4 |
Outer characteristic polynomial |
t^7+31t^5+70t^3+14t |
Flat arrow polynomial |
4*K1**3 - 12*K1**2 - 8*K1*K2 + K1 + 6*K2 + 3*K3 + 7 |
2-strand cable arrow polynomial |
-192*K1**4*K2**2 + 1312*K1**4*K2 - 3600*K1**4 + 544*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1024*K1**3*K3 + 704*K1**2*K2**3 + 320*K1**2*K2**2*K4 - 6656*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 192*K1**2*K2*K4**2 - 1280*K1**2*K2*K4 + 11920*K1**2*K2 - 624*K1**2*K3**2 - 32*K1**2*K3*K5 - 384*K1**2*K4**2 - 8220*K1**2 + 256*K1*K2**3*K3 - 1344*K1*K2**2*K3 - 256*K1*K2**2*K5 - 960*K1*K2*K3*K4 + 9392*K1*K2*K3 - 160*K1*K2*K4*K5 + 2456*K1*K3*K4 + 552*K1*K4*K5 - 32*K2**6 + 288*K2**4*K4 - 1360*K2**4 - 96*K2**3*K6 - 400*K2**2*K3**2 - 320*K2**2*K4**2 + 2696*K2**2*K4 - 6618*K2**2 + 656*K2*K3*K5 + 184*K2*K4*K6 - 3136*K3**2 - 1488*K4**2 - 196*K5**2 - 6*K6**2 + 6750 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |