Gauss code |
O1O2O3U1U4O5O6U2U6O4U3U5 |
R3 orbit |
{'O1O2O3U1U4O5O6U2U6O4U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U1O5U6U2O6O4U5U3 |
Gauss code of K* |
O1O2U3O4O5U6U1U4O6O3U5U2 |
Gauss code of -K* |
O1O2U3O4O5U4U1O3O6U2U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 0 1 1],[ 2 0 1 2 1 2 1],[ 1 -1 0 1 0 2 1],[-1 -2 -1 0 -1 0 0],[ 0 -1 0 1 0 1 1],[-1 -2 -2 0 -1 0 0],[-1 -1 -1 0 -1 0 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 0 0 -1 -1 -1],[-1 0 0 0 -1 -1 -2],[-1 0 0 0 -1 -2 -2],[ 0 1 1 1 0 0 -1],[ 1 1 1 2 0 0 -1],[ 2 1 2 2 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,0,0,1,1,1,0,1,1,2,1,2,2,0,1,1] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,1,0,0,0,0,0,0] |
Phi of -K |
[-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,1,0,0,0,0,0,0] |
Phi of K* |
[-1,-1,-1,0,1,2,0,0,0,0,1,0,0,1,1,0,1,2,1,1,0] |
Phi of -K* |
[-2,-1,0,1,1,1,1,1,1,2,2,0,1,1,2,1,1,1,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
z^2+22z+41 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+22w^2z+41w |
Inner characteristic polynomial |
t^6+20t^4+10t^2+1 |
Outer characteristic polynomial |
t^7+28t^5+23t^3+4t |
Flat arrow polynomial |
-10*K1**2 - 8*K1*K2 + 4*K1 + 5*K2 + 4*K3 + 6 |
2-strand cable arrow polynomial |
-448*K1**6 - 192*K1**4*K2**2 + 1824*K1**4*K2 - 5776*K1**4 + 384*K1**3*K2*K3 - 960*K1**3*K3 + 32*K1**2*K2**2*K4 - 4768*K1**2*K2**2 - 192*K1**2*K2*K4 + 11504*K1**2*K2 - 1072*K1**2*K3**2 - 160*K1**2*K4**2 - 6004*K1**2 - 576*K1*K2**2*K3 - 256*K1*K2*K3*K4 + 7320*K1*K2*K3 + 1760*K1*K3*K4 + 224*K1*K4*K5 - 456*K2**4 - 384*K2**2*K3**2 - 128*K2**2*K4**2 + 1112*K2**2*K4 - 5608*K2**2 + 472*K2*K3*K5 + 128*K2*K4*K6 - 2580*K3**2 - 874*K4**2 - 152*K5**2 - 32*K6**2 + 5856 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{6}, {4, 5}, {1, 3}, {2}]] |
If K is slice |
False |