Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1700

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,1,2,1,3,0,2,0,1,0,1,1,1,2,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1700']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+35t^5+32t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1700']
2-strand cable arrow polynomial of the knot is: -1728*K1**4*K2**2 + 3104*K1**4*K2 - 4288*K1**4 + 448*K1**3*K2*K3 - 512*K1**3*K3 + 2592*K1**2*K2**3 - 10912*K1**2*K2**2 - 416*K1**2*K2*K4 + 11528*K1**2*K2 - 288*K1**2*K3**2 - 5560*K1**2 - 960*K1*K2**2*K3 + 8088*K1*K2*K3 + 544*K1*K3*K4 - 1152*K2**4 + 840*K2**2*K4 - 4032*K2**2 - 1640*K3**2 - 260*K4**2 + 4602
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1700']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4753', 'vk6.5082', 'vk6.6299', 'vk6.6740', 'vk6.8260', 'vk6.8711', 'vk6.9642', 'vk6.9959', 'vk6.20393', 'vk6.21736', 'vk6.27723', 'vk6.29267', 'vk6.39171', 'vk6.41397', 'vk6.45895', 'vk6.47538', 'vk6.48793', 'vk6.49006', 'vk6.49617', 'vk6.49822', 'vk6.50817', 'vk6.51034', 'vk6.51292', 'vk6.51489', 'vk6.57262', 'vk6.58481', 'vk6.61906', 'vk6.63013', 'vk6.66879', 'vk6.67755', 'vk6.69507', 'vk6.70223']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U2O4O5U6U4O6U3U5
R3 orbit {'O1O2O3U1U2O4O5U6U4O6U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O5U6U5O4O6U2U3
Gauss code of K* O1O2U1O3O4U5U6U3O5O6U2U4
Gauss code of -K* O1O2U3O4O3U1U4O5O6U2U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 2 -1],[ 2 0 1 2 0 1 2],[ 0 -1 0 1 0 1 0],[-1 -2 -1 0 1 2 -2],[ 0 0 0 -1 0 0 0],[-2 -1 -1 -2 0 0 -2],[ 1 -2 0 2 0 2 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -2 0 -1 -2 -1],[-1 2 0 1 -1 -2 -2],[ 0 0 -1 0 0 0 0],[ 0 1 1 0 0 0 -1],[ 1 2 2 0 0 0 -2],[ 2 1 2 0 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,2,0,1,2,1,-1,1,2,2,0,0,0,0,1,2]
Phi over symmetry [-2,-1,0,0,1,2,-1,1,2,1,3,0,2,0,1,0,1,1,1,2,-1]
Phi of -K [-2,-1,0,0,1,2,-1,1,2,1,3,1,1,0,1,0,0,1,2,2,-1]
Phi of K* [-2,-1,0,0,1,2,-1,1,2,1,3,0,2,0,1,0,1,1,1,2,-1]
Phi of -K* [-2,-1,0,0,1,2,2,0,1,2,1,0,0,2,2,0,-1,0,1,1,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+25t^4+16t^2
Outer characteristic polynomial t^7+35t^5+32t^3+4t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -1728*K1**4*K2**2 + 3104*K1**4*K2 - 4288*K1**4 + 448*K1**3*K2*K3 - 512*K1**3*K3 + 2592*K1**2*K2**3 - 10912*K1**2*K2**2 - 416*K1**2*K2*K4 + 11528*K1**2*K2 - 288*K1**2*K3**2 - 5560*K1**2 - 960*K1*K2**2*K3 + 8088*K1*K2*K3 + 544*K1*K3*K4 - 1152*K2**4 + 840*K2**2*K4 - 4032*K2**2 - 1640*K3**2 - 260*K4**2 + 4602
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}]]
If K is slice True
Contact