Gauss code |
O1O2O3O4O5O6U1U3U4U5U6U2 |
R3 orbit |
{'O1O2O3O4O5O6U1U3U4U5U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U1U2U3U4U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U6U2U3U4U5 |
Gauss code of -K* |
O1O2O3O4O5O6U2U3U4U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 1 -2 0 2 4],[ 5 0 5 1 2 3 4],[-1 -5 0 -3 -1 1 3],[ 2 -1 3 0 1 2 3],[ 0 -2 1 -1 0 1 2],[-2 -3 -1 -2 -1 0 1],[-4 -4 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 4 2 1 0 -2 -5],[-4 0 -1 -3 -2 -3 -4],[-2 1 0 -1 -1 -2 -3],[-1 3 1 0 -1 -3 -5],[ 0 2 1 1 0 -1 -2],[ 2 3 2 3 1 0 -1],[ 5 4 3 5 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-1,0,2,5,1,3,2,3,4,1,1,2,3,1,3,5,1,2,1] |
Phi over symmetry |
[-5,-2,0,1,2,4,1,2,5,3,4,1,3,2,3,1,1,2,1,3,1] |
Phi of -K |
[-5,-2,0,1,2,4,2,3,1,4,5,1,0,2,3,0,1,2,0,0,1] |
Phi of K* |
[-4,-2,-1,0,2,5,1,0,2,3,5,0,1,2,4,0,0,1,1,3,2] |
Phi of -K* |
[-5,-2,0,1,2,4,1,2,5,3,4,1,3,2,3,1,1,2,1,3,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^4-t |
Normalized Jones-Krushkal polynomial |
z+3 |
Enhanced Jones-Krushkal polynomial |
-8w^5z+16w^4z-6w^3z-w^2z+3w |
Inner characteristic polynomial |
t^6+95t^4 |
Outer characteristic polynomial |
t^7+145t^5+70t^3 |
Flat arrow polynomial |
16*K1**5 - 8*K1**4 - 8*K1**3*K2 - 12*K1**3 + 4*K1**2*K2 + 4*K1**2 + 2*K1*K2 + 2*K1 + 1 |
2-strand cable arrow polynomial |
-96*K1**4 + 1024*K1**2*K2**7 - 3328*K1**2*K2**6 + 1152*K1**2*K2**5 + 192*K1**2*K2**4 + 32*K1**2*K2**3 - 672*K1**2*K2**2 + 752*K1**2*K2 - 32*K1**2*K3**2 - 632*K1**2 + 512*K1*K2**7*K3 + 1152*K1*K2**5*K3 - 96*K1*K2**3*K3 + 536*K1*K2*K3 + 96*K1*K3*K4 + 16*K1*K4*K5 + 8*K1*K5*K6 - 512*K2**10 + 512*K2**8*K4 - 896*K2**8 - 512*K2**6*K3**2 - 128*K2**6*K4**2 + 928*K2**6 + 128*K2**5*K3*K5 + 64*K2**4*K3**2 + 32*K2**4*K4**2 + 64*K2**4*K4 - 272*K2**4 - 32*K2**3*K3*K5 - 96*K2**2*K3**2 - 24*K2**2*K4**2 + 160*K2**2*K4 - 264*K2**2 + 48*K2*K3*K5 + 8*K2*K4*K6 - 192*K3**2 - 100*K4**2 - 24*K5**2 - 8*K6**2 + 498 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}]] |
If K is slice |
False |