Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1695

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,0,0,1,2,3,-1,0,0,2,1,0,1,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1695']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+34t^5+109t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1695']
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 1152*K1**4*K2 - 5344*K1**4 + 192*K1**3*K2*K3 - 384*K1**3*K3 + 1536*K1**2*K2**3 - 8672*K1**2*K2**2 - 256*K1**2*K2*K4 + 11552*K1**2*K2 - 3736*K1**2 - 768*K1*K2**2*K3 + 6064*K1*K2*K3 - 1568*K2**4 + 1056*K2**2*K4 - 3072*K2**2 - 952*K3**2 - 72*K4**2 + 3654
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1695']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81559', 'vk6.81635', 'vk6.81828', 'vk6.82048', 'vk6.82221', 'vk6.82333', 'vk6.82538', 'vk6.82995', 'vk6.83131', 'vk6.83571', 'vk6.83934', 'vk6.84073', 'vk6.84524', 'vk6.84886', 'vk6.85909', 'vk6.86415', 'vk6.86465', 'vk6.88830', 'vk6.89772', 'vk6.89881']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4O5U6U1U2O4O6U3U5
R3 orbit {'O1O2O3U4O5U6U1U2O4O6U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1O5O6U2U3U5O4U6
Gauss code of K* O1O2O3U4U1O5O6U2U3U5O4U6
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 1 -2 2 -1],[ 1 0 1 0 0 1 1],[-1 -1 0 -1 -1 0 0],[-1 0 1 0 -2 0 0],[ 2 0 1 2 0 3 0],[-2 -1 0 0 -3 0 -2],[ 1 -1 0 0 0 2 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 0 0 -1 -2 -3],[-1 0 0 1 0 0 -2],[-1 0 -1 0 -1 0 -1],[ 1 1 0 1 0 1 0],[ 1 2 0 0 -1 0 0],[ 2 3 2 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,0,0,1,2,3,-1,0,0,2,1,0,1,-1,0,0]
Phi over symmetry [-2,-1,-1,1,1,2,0,0,1,2,3,-1,0,0,2,1,0,1,-1,0,0]
Phi of -K [-2,-1,-1,1,1,2,1,1,1,2,1,-1,2,1,2,2,2,1,-1,1,1]
Phi of K* [-2,-1,-1,1,1,2,1,1,1,2,1,-1,2,1,2,2,2,1,-1,1,1]
Phi of -K* [-2,-1,-1,1,1,2,0,0,1,2,3,-1,0,0,2,1,0,1,-1,0,0]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+24z+33
Enhanced Jones-Krushkal polynomial 4w^3z^2+24w^2z+33w
Inner characteristic polynomial t^6+22t^4+65t^2+1
Outer characteristic polynomial t^7+34t^5+109t^3+7t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -384*K1**4*K2**2 + 1152*K1**4*K2 - 5344*K1**4 + 192*K1**3*K2*K3 - 384*K1**3*K3 + 1536*K1**2*K2**3 - 8672*K1**2*K2**2 - 256*K1**2*K2*K4 + 11552*K1**2*K2 - 3736*K1**2 - 768*K1*K2**2*K3 + 6064*K1*K2*K3 - 1568*K2**4 + 1056*K2**2*K4 - 3072*K2**2 - 952*K3**2 - 72*K4**2 + 3654
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}]]
If K is slice True
Contact