Gauss code |
O1O2O3U4O5U2U1U6O4O6U3U5 |
R3 orbit |
{'O1O2O3U4O5U2U1U6O4O6U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U1O5O6U5U3U2O4U6 |
Gauss code of K* |
O1O2O3U4U3O5O6U2U1U5O4U6 |
Gauss code of -K* |
O1O2O3U4O5U6U3U2O4O6U1U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 1 -2 2 1],[ 1 0 0 1 0 2 2],[ 1 0 0 0 1 1 2],[-1 -1 0 0 -2 0 0],[ 2 0 -1 2 0 3 2],[-2 -2 -1 0 -3 0 -2],[-1 -2 -2 0 -2 2 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 -2 -1 -2 -3],[-1 0 0 0 0 -1 -2],[-1 2 0 0 -2 -2 -2],[ 1 1 0 2 0 0 1],[ 1 2 1 2 0 0 0],[ 2 3 2 2 -1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,2,1,2,3,0,0,1,2,2,2,2,0,-1,0] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,2,2,3,0,0,2,1,1,2,2,0,0,2] |
Phi of -K |
[-2,-1,-1,1,1,2,1,2,1,1,1,0,0,1,1,0,2,2,0,-1,1] |
Phi of K* |
[-2,-1,-1,1,1,2,-1,1,1,2,1,0,0,0,1,1,2,1,0,1,2] |
Phi of -K* |
[-2,-1,-1,1,1,2,-1,0,2,2,3,0,0,2,1,1,2,2,0,0,2] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
-2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w |
Inner characteristic polynomial |
t^6+36t^4+71t^2+4 |
Outer characteristic polynomial |
t^7+48t^5+111t^3+12t |
Flat arrow polynomial |
-4*K1*K2 + 2*K1 + 2*K3 + 1 |
2-strand cable arrow polynomial |
128*K1**4*K2 - 1584*K1**4 + 512*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1216*K1**3*K3 - 864*K1**2*K2**2 - 320*K1**2*K2*K4 + 4224*K1**2*K2 - 1488*K1**2*K3**2 - 64*K1**2*K3*K5 - 48*K1**2*K4**2 - 3648*K1**2 + 64*K1*K2**3*K3 - 96*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 4264*K1*K2*K3 + 1912*K1*K3*K4 + 192*K1*K4*K5 - 32*K2**4 - 64*K2**2*K3**2 - 16*K2**2*K4**2 + 400*K2**2*K4 - 2660*K2**2 + 200*K2*K3*K5 + 32*K2*K4*K6 - 1900*K3**2 - 780*K4**2 - 140*K5**2 - 12*K6**2 + 3066 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |