Min(phi) over symmetries of the knot is: [-2,-2,1,1,1,1,-1,0,1,2,2,1,1,1,2,0,-1,0,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1683'] |
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928'] |
Outer characteristic polynomial of the knot is: t^7+42t^5+57t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1683'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 768*K1**4*K2**2 + 5152*K1**4*K2 - 6288*K1**4 - 384*K1**3*K2**2*K3 + 1024*K1**3*K2*K3 + 32*K1**3*K3*K4 - 2688*K1**3*K3 + 384*K1**2*K2**5 - 960*K1**2*K2**4 - 384*K1**2*K2**3*K4 + 2688*K1**2*K2**3 + 992*K1**2*K2**2*K4 - 8320*K1**2*K2**2 + 448*K1**2*K2*K3**2 + 96*K1**2*K2*K4**2 - 736*K1**2*K2*K4 + 10288*K1**2*K2 - 1200*K1**2*K3**2 - 128*K1**2*K3*K5 - 176*K1**2*K4**2 - 4404*K1**2 + 672*K1*K2**3*K3 - 1760*K1*K2**2*K3 - 160*K1*K2**2*K5 - 736*K1*K2*K3*K4 + 7624*K1*K2*K3 + 1440*K1*K3*K4 + 336*K1*K4*K5 - 288*K2**6 + 352*K2**4*K4 - 1248*K2**4 - 32*K2**3*K6 - 416*K2**2*K3**2 - 112*K2**2*K4**2 + 1144*K2**2*K4 - 3454*K2**2 + 360*K2*K3*K5 + 24*K2*K4*K6 - 1836*K3**2 - 528*K4**2 - 128*K5**2 - 2*K6**2 + 4142 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1683'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16346', 'vk6.16356', 'vk6.16389', 'vk6.16399', 'vk6.19179', 'vk6.19187', 'vk6.19472', 'vk6.19480', 'vk6.22776', 'vk6.22782', 'vk6.25978', 'vk6.25984', 'vk6.26368', 'vk6.26374', 'vk6.34631', 'vk6.34647', 'vk6.34717', 'vk6.34739', 'vk6.38077', 'vk6.38085', 'vk6.42353', 'vk6.42362', 'vk6.44563', 'vk6.44569', 'vk6.54613', 'vk6.54615', 'vk6.56521', 'vk6.56542', 'vk6.59144', 'vk6.59154', 'vk6.66257', 'vk6.66265'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U4O5U1U3U6O4O6U5U2 |
R3 orbit | {'O1O2O3U4O5U1U3U6O4O6U5U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U4O5O6U5U1U3O4U6 |
Gauss code of K* | O1O2O3U4U3O5O6U1U6U2O4U5 |
Gauss code of -K* | O1O2O3U4O5U2U6U3O6O4U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 1 -2 1 1],[ 2 0 2 1 1 1 3],[-1 -2 0 0 -2 0 0],[-1 -1 0 0 -1 0 0],[ 2 -1 2 1 0 2 2],[-1 -1 0 0 -2 0 -1],[-1 -3 0 0 -2 1 0]] |
Primitive based matrix | [[ 0 1 1 1 1 -2 -2],[-1 0 1 0 0 -2 -3],[-1 -1 0 0 0 -2 -1],[-1 0 0 0 0 -1 -1],[-1 0 0 0 0 -2 -2],[ 2 2 2 1 2 0 -1],[ 2 3 1 1 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,-1,-1,2,2,-1,0,0,2,3,0,0,2,1,0,1,1,2,2,1] |
Phi over symmetry | [-2,-2,1,1,1,1,-1,0,1,2,2,1,1,1,2,0,-1,0,0,0,0] |
Phi of -K | [-2,-2,1,1,1,1,-1,0,1,2,2,1,1,1,2,0,-1,0,0,0,0] |
Phi of K* | [-1,-1,-1,-1,2,2,-1,0,0,1,2,0,0,1,0,0,1,1,2,2,-1] |
Phi of -K* | [-2,-2,1,1,1,1,-1,1,2,2,2,1,1,2,3,0,0,0,0,-1,0] |
Symmetry type of based matrix | c |
u-polynomial | 2t^2-4t |
Normalized Jones-Krushkal polynomial | 6z^2+26z+29 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+8w^3z^2+26w^2z+29w |
Inner characteristic polynomial | t^6+30t^4+29t^2 |
Outer characteristic polynomial | t^7+42t^5+57t^3+6t |
Flat arrow polynomial | 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial | -64*K1**6 - 768*K1**4*K2**2 + 5152*K1**4*K2 - 6288*K1**4 - 384*K1**3*K2**2*K3 + 1024*K1**3*K2*K3 + 32*K1**3*K3*K4 - 2688*K1**3*K3 + 384*K1**2*K2**5 - 960*K1**2*K2**4 - 384*K1**2*K2**3*K4 + 2688*K1**2*K2**3 + 992*K1**2*K2**2*K4 - 8320*K1**2*K2**2 + 448*K1**2*K2*K3**2 + 96*K1**2*K2*K4**2 - 736*K1**2*K2*K4 + 10288*K1**2*K2 - 1200*K1**2*K3**2 - 128*K1**2*K3*K5 - 176*K1**2*K4**2 - 4404*K1**2 + 672*K1*K2**3*K3 - 1760*K1*K2**2*K3 - 160*K1*K2**2*K5 - 736*K1*K2*K3*K4 + 7624*K1*K2*K3 + 1440*K1*K3*K4 + 336*K1*K4*K5 - 288*K2**6 + 352*K2**4*K4 - 1248*K2**4 - 32*K2**3*K6 - 416*K2**2*K3**2 - 112*K2**2*K4**2 + 1144*K2**2*K4 - 3454*K2**2 + 360*K2*K3*K5 + 24*K2*K4*K6 - 1836*K3**2 - 528*K4**2 - 128*K5**2 - 2*K6**2 + 4142 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{6}, {1, 5}, {3, 4}, {2}]] |
If K is slice | False |