Gauss code |
O1O2O3U2O4U5U6U3O5O6U1U4 |
R3 orbit |
{'O1O2O3U2O4U5U6U3O5O6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U3O5O6U1U5U6O4U2 |
Gauss code of K* |
O1O2O3U1U2O4O5U4U6U3O6U5 |
Gauss code of -K* |
O1O2O3U4O5U1U5U6O4O6U2U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 2 2 -2 0],[ 1 0 -1 3 2 -1 1],[ 1 1 0 1 1 0 0],[-2 -3 -1 0 -1 -2 -1],[-2 -2 -1 1 0 -3 -1],[ 2 1 0 2 3 0 1],[ 0 -1 0 1 1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 -1 -1 -2],[-2 0 1 -1 -1 -2 -3],[-2 -1 0 -1 -1 -3 -2],[ 0 1 1 0 0 -1 -1],[ 1 1 1 0 0 1 0],[ 1 2 3 1 -1 0 -1],[ 2 3 2 1 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,1,1,2,-1,1,1,2,3,1,1,3,2,0,1,1,-1,0,1] |
Phi over symmetry |
[-2,-2,0,1,1,2,-1,1,0,2,2,1,1,2,1,0,1,1,-1,0,1] |
Phi of -K |
[-2,-1,-1,0,2,2,0,1,1,1,2,1,0,1,0,1,2,2,1,1,-1] |
Phi of K* |
[-2,-2,0,1,1,2,-1,1,0,2,2,1,1,2,1,0,1,1,-1,0,1] |
Phi of -K* |
[-2,-1,-1,0,2,2,0,1,1,2,3,1,0,1,1,1,3,2,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+35t^4+41t^2+4 |
Outer characteristic polynomial |
t^7+49t^5+66t^3+11t |
Flat arrow polynomial |
12*K1**3 - 10*K1**2 - 8*K1*K2 - 5*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-1152*K1**4*K2**2 + 2624*K1**4*K2 - 3760*K1**4 - 384*K1**3*K2**2*K3 + 1248*K1**3*K2*K3 - 800*K1**3*K3 - 896*K1**2*K2**4 + 4192*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 13024*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 960*K1**2*K2*K4 + 11560*K1**2*K2 - 400*K1**2*K3**2 - 32*K1**2*K3*K5 - 5424*K1**2 + 2528*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 2080*K1*K2**2*K3 - 416*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 8856*K1*K2*K3 - 32*K1*K2*K4*K5 + 624*K1*K3*K4 + 24*K1*K4*K5 - 96*K2**6 + 192*K2**4*K4 - 3224*K2**4 - 32*K2**3*K6 - 1088*K2**2*K3**2 - 96*K2**2*K4**2 + 1936*K2**2*K4 - 2766*K2**2 + 320*K2*K3*K5 + 24*K2*K4*K6 - 1632*K3**2 - 286*K4**2 - 24*K5**2 - 2*K6**2 + 4348 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice |
False |